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Abstract

In modern programming languages, queries on in-memory collections are often more expensive than
needed. While database queries can be readily optimized, collection queries often don’t translate
trivially to databases, as modern programming languages are far more expressive than databases,
supporting both nested data and �rst-class functions.

Collection queries can be optimized and incrementalized by hand, but this reduces modularity,
and is often too error-prone to be feasible or to enable maintenance of resulting programs. In this
thesis, we optimize and incrementalize such collection queries to free programmers from such
burdens. Resulting programs are expressed in the same core language, so that they can be subjected
to other standard optimizations.

To enable optimizing collection queries which occur inside programs, we develop a staged
variant of the Scala collection API that rei�es queries as ASTs. On top of this interface, we adapt
domain-speci�c optimizations from the �elds of programming languages and databases; among
others, we rewrite queries to use indexes chosen by programmers. Thanks to the use of indexes we
show signi�cant speedups in our experimental evaluation, with an average of 12x and a maximum
of 12800x.

To incrementalize higher-order programs by program transformation, we extend �nite di�er-
encing [Paige and Koenig, 1982; Blakeley et al., 1986; Gupta and Mumick, 1999] and develop the
�rst approach to incrementalization by program transformation for higher-order programs. Base
programs are transformed to derivatives, programs that transform input changes to output changes.
We prove that our incrementalization approach is correct: We develop the theory underlying this
approach for simply-typed and untyped λ-calculus, and discuss extensions to System F.

Derivatives often need to reuse results produced by base programs: to enable such reuse, we
extend work by Liu and Teitelbaum [1995] to higher-order programs, and develop and prove correct
a program transformation, converting higher-order programs to cache-transfer-style.

For e�cient incrementalization, it is necessary to choose and incrementalize by hand appropriate
primitive operations. We incrementalize a signi�cant subset of collection operations and perform
case studies, showing order-of-magnitude speedups both in practice and in asymptotic complexity.
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Zusammenfassung

In modernen, universellen Programmiersprachen sind Abfragen auf Speicher-basierten Kollektio-
nen oft rechenintensiver als erforderlich. Während Datenbankenabfragen vergleichsweise einfach
optimiert werden können, fällt dies bei Speicher-basierten Kollektionen oft schwer, denn universelle
Programmiersprachen sind in aller Regel ausdrucksstärker als Datenbanken. Insbesondere unter-
stützen diese Sprachen meistens verschachtelte, rekursive Datentypen und Funktionen höherer
Ordnung.

Kollektionsabfragen können per Hand optimiert und inkrementalisiert werden, jedoch verringert
dies häu�g die Modularität und ist oft zu fehleranfällig, um realisierbar zu sein oder um Instandhal-
tung von entstandene Programm zu gewährleisten. Die vorliegende Doktorarbeit demonstriert, wie
Abfragen auf Kollektionen systematisch und automatisch optimiert und inkrementalisiert werden
können, um Programmierer von dieser Last zu befreien. Die so erzeugten Programme werden in
derselben Kernsprache ausgedrückt, um weitere Standardoptimierungen zu ermöglichen.

Teil I entwickelt eine Variante der Scala API für Kollektionen, die Staging verwendet um Abfra-
gen als abstrakte Syntaxbäume zu rei�zieren. Auf Basis dieser Schnittstelle werden anschließend
domänenspezi�sche Optimierungen von Programmiersprachen und Datenbanken angewandt; unter
anderem werden Abfragen umgeschrieben, um vom Programmierer ausgewählte Indizes zu benutzen.
Dank dieser Indizes kann eine erhebliche Beschleunigung der Ausführungsgeschwindigkeit gezeigt
werden; eine experimentelle Auswertung zeigt hierbei Beschleunigungen von durchschnittlich 12x
bis zu einem Maximum von 12800x.

Um Programme mit Funktionen höherer Ordnung durch Programmtransformation zu inkre-
mentalisieren, wird in Teil II eine Erweiterung der Finite-Di�erenzen-Methode vorgestellt [Paige
and Koenig, 1982; Blakeley et al., 1986; Gupta and Mumick, 1999] und ein erster Ansatz zur Inkre-
mentalisierung durch Programmtransformation für Programme mit Funktionen höherer Ordnung
entwickelt. Dabei werden Programme zu Ableitungen transformiert, d.h. zu Programmen die Ein-
gangsdi�erenzen in Ausgangdi�erenzen umwandeln. Weiterhin werden in den Kapiteln 12–13 die
Korrektheit des Inkrementalisierungsansatzes für einfach-getypten und ungetypten λ-Kalkül bewie-
sen und Erweiterungen zu System F besprochen.

Ableitungen müssen oft Ergebnisse der ursprünglichen Programme wiederverwenden. Um eine
solche Wiederverwendung zu ermöglichen, erweitert Kapitel 17 die Arbeit von Liu and Teitelbaum
[1995] zu Programmen mit Funktionen höherer Ordnung und entwickeln eine Programmtransfor-
mation solcher Programme im Cache-Transfer-Stil.

Für eine e�ziente Inkrementalisierung ist es weiterhin notwendig, passende Grundoperationen
auszuwählen und manuell zu inkrementalisieren. Diese Arbeit deckt einen Großteil der wich-
tigsten Grundoperationen auf Kollektionen ab. Die Durchführung von Fallstudien zeigt deutliche
Laufzeitverbesserungen sowohl in Praxis als auch in der asymptotischen Komplexität.
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Chapter 1

Introduction

Many program perform queries on collections of data, and for non-trivial amounts of data it is
useful to execute the queries e�ciently. When the data is updated often enough, it can also be useful
to update the results of some queries incrementally whenever the input changes, so that up-to-date
results are quickly available, even for queries that are expensive to execute.

For instance, a program manipulating anagraphic data about citizens of a country might need
to compute statistics on them, such as their average age, and update those statistics when the set of
citizens changes.

Traditional relational database management systems (RDBMS) support both queries optimiza-
tion and (in quite a few cases) incremental update of query results (called there incremental view
maintenance).

However, often queries are executed on collections of data that are not stored in a database, but
in collections manipulated by some program. Moving in-memory data to RDBMSs typically does
not improve performance [Stonebraker et al., 2007; Rompf and Amin, 2015], and reusing database
optimizers is not trivial.

Moreover, many programming languages are far more expressive than RDBMSs. Typical RDBMS
can only manipulate SQL relations, that is multisets (or bags) of tuples (or sometimes sets of tuples,
after duplicate elimination). Typical programming languages (PL) support also arbitrarily nested
lists and maps of data, and allow programmers to de�ne new data types with few restrictions; a
typical PL will also allow a far richer set of operations than SQL.

However, typical PLs do not apply typical database optimizations to collection queries, and if
queries are incrementalized, this is often done by hand, even though code implementing incremental
query is error-prone and hard-to-maintain [Salvaneschi and Mezini, 2013].

What’s worse, some of these manual optimizations are best done over the whole program. Some
optimizations only become possible after inlining, which reduces modularity if done by hand.1

Worse, adding an index on some collection can speed up looking for some information, but
each index must be maintained incrementally when the underlying data changes. Depending on
the actual queries and updates performed on the collection, and on how often they happen, it might
turn out that updating an index takes more time than the index saves; hence the choice of which
indexes to enable depends on the whole program. However, adding/removing an index requires
updating all PL queries to use it, while RDBMS queries can use an index transparently.

Overall, manual optimizations are not only e�ort-intensive and error-prone, but they also
signi�cantly reduce modularity.

1In Chapter 2 we de�ne modularity as the ability to abstract behavior in a separate function (possibly part of a di�erent
module) to enable reuse and improve understandability.

1



2 Chapter 1. Introduction

1.1 This thesis
To reduce the need for manual optimizations, in this thesis we propose techniques for optimizing
higher-order collection queries and executing them incrementally. By generalizing database-
inspired approaches, we provide approaches to query optimization and incrementalization by code
transformation to apply to higher-order collection queries including user-de�ned functions. Instead
of building on existing approaches to incrementalization, such as self-adjusting computation [Acar,
2009], we introduce a novel incrementalization approach which enables further transformations
on the incrementalization results. This approach is in fact not restricted to collection queries but
applicable to other domains, but it requires adaptation for the domain under consideration. Further
research is needed, but a number of case studies suggest applicability, even in some scenarios beyond
existing techniques [Koch et al., 2016].

We consider the problem for functional programming languages such as Haskell or Scala, and
we consider collection queries written using the APIs of their collection libraries, which we treat as
an embedded domain-speci�c language (EDSL). Such APIs (or DSLs) contain powerful operators on
collections such as map, which are higher-order, that is they take as arguments arbitrary functions
in the host language that we must also handle.

Therefore, our optimizations and incrementalizations must handle programs in higher-order
EDSLs that can contain arbitrary code in the host language. Hence, many of our optimizations
will exploit on properties of our collection EDSL, but will need to handle host language code. We
restrict the problem to purely functional programs (without mutation or other side e�ects, mostly
including non-termination), because such programs can be more “declarative” and because avoiding
side e�ects can enable more powerful optimization and simplify the work of the optimizer at the
same time.

This thesis is divided into two parts:

• In Part I, we optimize collection queries by static program transformation, based on a set of
rewrite rules [Giarrusso et al., 2013].

• In Part II, we incrementalize programs by transforming them to new programs. This thesis
presents the �rst approach that handles higher-order programs through program transforma-
tion; hence, while our main examples use collection queries, we phrase the work in terms of
λ-calculi with unspeci�ed primitives [Cai, Giarrusso, Rendel, and Ostermann, 2014]. In Chap-
ter 17, we extend ILC with a further program transformation step, so that base programs can
store intermediate results and derivatives can reuse them, but without resorting to dynamic
memoization and necessarily needing to look results up at runtime. To this end, we build on
work by Liu [2000] and extend it to a higher-order, typed setting.

Part II is more theoretical than Part I, because optimizations in Part I are much better understood
than our approach to incrementalization.

To incrementalize programs, we are the �rst to extend to higher-order programs techniques based
on �nite di�erencing for queries on collections [Paige and Koenig, 1982] and databases [Blakeley
et al., 1986; Gupta and Mumick, 1999]. Incrementalizing by �nite di�erencing is a well-understood
technique for database queries. How to generalize it for higher-order programs or beyond databases
was less clear, so we spend signi�cant energy on providing sound mathematical foundations for
this transformation.

In fact, it took us a while to be sure that our transformation was correct, and to understand why;
our �rst correctness proof [Cai, Giarrusso, Rendel, and Ostermann, 2014], while a signi�cant step,
was still more complex than needed. In Part II, especially Chapter 12, we o�er a mathematically
much simpler proof.
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Contributions of Part I are listed in Sec. 2.1. Contributions of Part II are listed at the end of
Sec. 10.7.

1.1.1 Included papers
This thesis includes material from joint work with colleagues.

Part I is based on work by Giarrusso, Ostermann, Eichberg, Mitschke, Rendel, and Kästner [2013],
and Chapters 2 to 4, 6, 8 and 9 come from that manuscript. While the work was in collaboration,
a few clearer responsibilities arose. I did most of the implementation work, and collaborated to
the writing: among other things I devised the embedding for collection operations, implemented
optimizations and indexing, implemented compilation when interpretation did not achieve su�cient
performance, and performed the performance evaluation. Michael Eichberg and Ralf Mitschke
contributed to the evaluation by adapting FindBugs queries. Christian Kästner contributed, among
other things, to the experiment design for the performance evaluation. Klaus Ostermann proposed
the original idea (together with an initial prototype) and supervised the project.

The �rst chapters of Part II are originally based on work by Cai, Giarrusso, Rendel, and Ostermann
[2014], though signi�cantly revised; Chapter 10 contains signi�cantly revised text from that paper,
and Chapters 16 and 19 survive mostly unchanged. This work was even more of a team e�ort. I
initiated and led the overall project and came up with the original notion of change structures. Cai
Yufei contributed di�erentiation itself and its �rst correctness proof. Tillmann Rendel contributed
signi�cant simpli�cations and started the overall mechanization e�ort. Klaus Ostermann provided
senior supervision that proved essential to the project. Chapters 12 and 13 contain a novel correctness
proof for simply-typed λ-calculus; for its history and contributions see Sec. 13.5.

Furthermore, Chapter 17 comes from a recently submitted manuscript [Giarrusso, Régis-Gianas,
and Schuster, Submitted]. I designed the overall approach, the transformation and the case study
on sequences and nested loops. Proofs were done in collaboration with Yann Régis-Gianas: he
is the main author of the Coq mechanization and proof, though I contributed signi�cantly to the
correctness proof for ILC, in particular with the proofs described in Appendix C and their partial
Agda mechanization. The history of this correctness proof is described in Appendix C.9. Philipp
Schuster contributed to the evaluation, devising language plugins for bags and maps in collaboration
with me.

1.1.2 Excluded papers
This thesis improves modularity of collection queries by automating di�erent sorts of optimizations
on them.

During my PhD work I collaborated on several other papers, mostly on di�erent facets of
modularity, which do not appear in this thesis.

Modularity Module boundaries hide information on implementation that is not relevant to clients.
However, it often turns out that some scenarios, clients or task require such hidden information. As
discussed, manual optimization requires hidden information: hence, researchers strive to automate
optimizations. But other tasks often violate these boundaries. I collaborated on research on
understanding why this happens and how to deal with this problem [Ostermann, Giarrusso, Kästner,
and Rendel, 2011].

Software Product Lines In some scenarios, a di�erent form of modular software is realized
through software product lines (SPLs), where many variants of a single software artifact (with
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di�erent sets of features) can be generated. This is often done using conditional compilation, for
instance through the C preprocessor.

But if a software product line uses conditional compilation, processing automatically its source
code is di�cult — in fact, even lexing or parsing it is a challenge. Since the number of variants is
exponential in the number of features, generating and processing each variant does not scale.

To address these challenges, I collaborated with the TypeChef project to develop a variability-
aware lexer [Kästner, Giarrusso, and Ostermann, 2011a] and parser [Kästner, Giarrusso, Rendel,
Erdweg, Ostermann, and Berger, 2011b].

Another challenge is predicting non-functional properties (such as code size or performance) of
a variant of a software product line before generation and direct measurement. Such predictions
can be useful to select e�ciently a variant that satis�es some non-functional requirements. I
collaborated to research on predicting such non-functional properties: we measure the properties
on a few variants and extrapolate the results to other variants. In particular, I collaborated to
the experimental evaluation on a few open source projects, where even a simple model reached
signi�cant accuracy in a few scenarios [Siegmund, Rosenmüller, Kästner, Giarrusso, Apel, and
Kolesnikov, 2011, 2013].

Domain-speci�c languages This thesis is concerned with DSLs, both ones for the domain of
collection queries, but also (in Part II) more general ones.

Di�erent forms of language composition, both among DSLs and across general-purpose lan-
guages and DSLs are possible, but their relationship is nontrivial; I collaborated to work classifying
the di�erent forms of language compositions [Erdweg, Giarrusso, and Rendel, 2012].

The implementation of S�Opt, as described in Part I, requires an extensible representation
of ASTs, similar to the one used by LMS [Rompf and Odersky, 2010]. While this representation is
pretty �exible, it relies on Scala’s support of GADTs [Emir et al., 2006, 2007b], which is known to be
somewhat fragile due to implementation bugs. In fact, sound pattern matching on Scala’s extensible
GADTs is impossible without imposing signi�cant restrictions to extensibility, due to language
extensions not considered during formal study [Emir et al., 2006, 2007a]: the problem arises due to
the interaction between GADTs, declaration-site variance annotations and variant re�nement of
type arguments at inheritance time. To illustrate the problem, I’ve shown it already applies to an
extensible de�nitional interpreter for λ<: [Giarrusso, 2013]. While solutions have been investigated
in other settings [Scherer and Rémy, 2013], the problem remains open for Scala to this day.

1.1.3 Navigating this thesis
The two parts of this thesis, while related by the common topic of collection queries, can be read
mostly independently from each other. Summaries of the two parts are given respectively in Sec. 2.1
and Sec. 10.7.1.

Numbering We use numbering and hyperlinks to help navigation; we explain our conventions
to enable exploiting them.

To simplify navigation, we number all sorts of “theorems” (including here de�nitions, remarks,
even examples or descriptions of notation) per-chapter with counters including section numbers.
For instance, De�nition 12.2.1 is the �rst such item in Chapter 12, followed by Theorem 12.2.2, and
they both appear in Sec. 12.2. And we can be sure that Lemma 12.2.8 comes after both “theorems”
because of its number, even if they are of di�erent sorts.

Similarly, we number tables and �gures per-chapter with a shared counter. For instance, Fig. 6.1
is the �rst �gure or table in Chapter 6, followed by Table 6.2.
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To help reading, at times we will repeat or anticipate statements of “theorems” to refer to them,
without forcing readers to jump back and forth. We will then reuse the original number. For instance
Sec. 12.2 contains a copy of Slogan 10.3.3 with its original number.

For ease of navigation, all such references are hyperlinked in electronic versions of this thesis,
and the table of contents is exposed to PDF readers via PDF bookmarks.
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Chapter 2

Introduction

In-memory collections of data often need e�cient processing. For on-disk data, e�cient processing
is already provided by database management systems (DBMS) thanks to their query optimizers,
which support many optimizations speci�c to the domain of collections. Moving in-memory data
to DBMSs, however, typically does not improve performance [Stonebraker et al., 2007], and query
optimizers cannot be reused separately since DBMS are typically monolithic and their optimizers
deeply integrated. A few collection-speci�c optimizations, such as shortcut fusion [Gill et al.,
1993], are supported by compilers for purely functional languages such as Haskell. However, the
implementation techniques for those optimizations do not generalize to many other ones, such
as support for indexes. In general, collection-speci�c optimizations are not supported by the
general-purpose optimizers used by typical (JIT) compilers.

Therefore programmers, when needing collection-related optimizations, perform them manually.
To allow that, they are often forced to perform manual inlining [Peyton Jones and Marlow, 2002].
But manual inlining modi�es source code by combining distinct functions together, while often
distinct functions should remain distinct, because they deal with di�erent concerns, or because one
function need to be reused in a di�erent context. In either case, manual inlining reduces modularity
— de�ned here as the ability to abstract behavior in a separate function (possibly part of a di�erent
module) to enable reuse and improve understandability.

For these reasons, currently developers need to choose between modularity and performance,
as also highlighted by Kiczales et al. [1997] on a similar example. Instead, we envision that they
should rely on an automatic optimizer performing inlining and collection-speci�c optimizations.
They would then achieve both performance and modularity.1

One way to implement such an optimizer would be to extend the compiler of the language
with a collection-speci�c optimizer, or to add some kind of external preprocessor to the language.
However, such solutions would be rather brittle (for instance, they lack composability with other
language extensions) and they would preclude optimization opportunities that arise only at runtime.

For this reason, our approach is implemented as an embedded domain-speci�c language (EDSL),
that is, as a regular library. We call this library S�Opt, the Scala QUery OPTimizer. S�Opt
consists of a Scala EDSL for queries on collections based on the Scala collections API. An expression
in this EDSL produces at run time an expression tree in the host language: a data structure which
represents the query to execute, similar to an abstract syntax tree (AST) or a query plan. Thanks to

1In the terminology of Kiczales et al. [1997], our goal is to be able to decompose di�erent generalized procedures of a
program according to its primary decomposition, while separating the handling of some performance concerns. To this end,
we are modularizing these performance concerns into a metaprogramming-based optimization module, which we believe
could be called, in that terminology, aspect.

9
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the extensibility of Scala, expressions in this language look almost identical to expressions with the
same meaning in Scala. When executing the query, S�Opt optimizes and compiles these expression
trees for more e�cient execution. Doing optimization at run time, instead of compile-time, avoids
the need for control-�ow analyses to determine which code will be actually executed [Chambers
et al., 2010], as we will see later.

We have chosen Scala [Odersky et al., 2011] to implement our library for two reasons: (i) Scala is
a good meta-language for EDSLs, because it is syntactically �exible and has a powerful type system,
and (ii) Scala has a sophisticated collections library with an attractive syntax (for-comprehensions)
to specify queries.

To evaluate S�Opt, we study queries of the FindBugs tool [Hovemeyer and Pugh, 2004]. We
rewrote a set of queries to use the Scala collections API and show that modularization incurs
signi�cant performance overhead. Subsequently, we consider versions of the same queries using
S�Opt. We demonstrate that the automatic optimization can reconcile modularity and performance
in many cases. Adding advanced optimizations such as indexing can even improve the performance
of the analyses beyond the original non-modular analyses.

2.1 Contributions and summary
Overall, our main contributions in Part I are the following:

• We illustrate the tradeo� between modularity and performance when manipulating collections,
caused by the lack of domain-speci�c optimizations (Sec. 2.2). Conversely, we illustrate how
domain-speci�c optimizations lead to more readable and more modular code (Chapter 3).

• We present the design and implementation of S�Opt, an embedded DSL for queries on
collections in Scala (Chapter 4).

• We evaluate S�Opt to show that it supports writing queries that are at the same time
modular and fast. We do so by re-implementing several code analyses of the FindBugs
tool. The resulting code is more modular and/or more e�cient, in some cases by orders of
magnitude. In these case studies, we measured average speedups of 12x with a maximum of
12800x (Chapter 6).

2.2 Motivation
In this section, we show how the absense of collection-speci�c optimizations forces programmers
to trade modularity against performance, which motivates our design of S�Opt to resolve this
con�ict.

As our running example through the chapter, we consider representing and querying a simple
in-memory bibliography. A book has, in our schema, a title, a publisher and a list of authors. Each
author, in turn, has a �rst and last name. We represent authors and books as instances of the Scala
classes Author and Book shown in Fig. 2.1. The class declarations list the type of each �eld: Titles,
publishers, and �rst and last names are all stored in �elds of type String. The list of authors is
stored in a �eld of type Seq[Author], that is, a sequence of authors – something that would be
more complex to model in a relational database. The code fragment also de�nes a collection of
books named books.

As a common idiom to query such collections, Scala provides for-comprehensions. For instance,
the for-comprehension computing records in Fig. 2.2 �nds all books published by Pearson Education
and yields, for each of those books, and for each of its authors, a record containing the book title,
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package schema
case class Author(firstName: String , lastName: String)
case class Book(title: String , publisher: String ,

authors: Seq[Author ])

val books: Set[Book] = Set(
new Book("Compilers: Principles , Techniques and Tools",

"Pearson Education",
Seq(new Author("Alfred V.", "Aho"),

new Author("Monica S.", "Lam"),
new Author("Ravi", "Sethi"),
new Author("Jeffrey D.", "Ullman"))

/* other books . . . */)

Figure 2.1: De�nition of the schema and of some content.

the full name of that author and the number of additional coauthors. The generator book ← books
functions like a loop header: The remainder of the for-comprehension is executed once per book
in the collection. Consequently, the generator author ← book.authors starts a nested loop. The
return value of the for-comprehension is a collection of all yielded records. Note that if a book has
multiple authors, this for-comprehensions will return multiple records relative to this book, one for
each author.

We can further process this collection with another for-comprehension, possibly in a di�erent
module. For example, still in Fig. 2.2, the function titleFilter �lters book titles containing the
word "Principles", and drops from each record the number of additional coauthors.

In Scala, the implementation of for-comprehensions is not �xed. Instead, the compiler desugars
a for-comprehension to a series of API calls, and di�erent collection classes can implement this
API di�erently. Later, we will use this �exibility to provide an optimizing implementation of for-
comprehensions, but in this section, we focus on the behavior of the standard Scala collections,
which implement for-comprehensions as loops that create intermediate collections.

2.2.1 Optimizing by Hand
In the naive implementation in Fig. 2.2 di�erent concerns are separated, hence it is modular. However,
it is also ine�cient. To execute this code, we �rst build the original collection and only later we
perform further processing to build the new result; creating the intermediate collection at the
interface between these functions is costly. Moreover, the same book can appear in records more
than once if the book has more than one author, but all of these duplicates have the same title.
Nevertheless, we test each duplicate title separately whether it contains the searched keyword. If
books have 4 authors on average, this means a slowdown of a factor of 4 for the �ltering step.

In general, one can only resolve these ine�ciencies by manually optimizing the query; however,
we will observe that these manual optimizations produce less modular code.2

To address the �rst problem above, that is, to avoid creating intermediate collections, we can
manually inline titleFilter and records; we obtain two nested for-comprehensions. Furthermore,
we can unnest the inner one [Fegaras and Maier, 2000].

2The existing Scala collections API supports optimization, for instance through non-strict variants of the query operators
(called ‘views’ in Scala), but they can only be used for a limited set of optimizations, as we discuss in Chapter 8.
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case class BookData(title: String , authorName: String ,
coauthors: Int)

val records =
for {

book ← books
if book.publisher == "Pearson Education"
author ← book.authors

} yield new BookData(book.title ,
author.firstName + " " +
author.lastName ,
book.authors.size - 1)

def titleFilter(records: Set[BookData],
keyword: String) =

for {
record ← records
if record.title.contains(keyword)

} yield (record.title , record.authorName)

val res = titleFilter(records , "Principles")

Figure 2.2: Our example query on the schema in Fig. 2.1, and a function which postprocesses its
result.

To address the second problem above, that is, to avoid testing the same title multiple times, we
hoist the �ltering step, that is, we change the order of the processing steps in the query to �rst
look for keyword within book.title and then iterate over the set of authors. This does not change
the overall semantics of the query because the �lter only accesses the title but does not depend
on the author. In the end, we obtain the code in Fig. 2.3. The resulting query processes the title of
each book only once. Since �ltering in Scala is done lazily, the resulting query avoids building an
intermediate collection.

This second optimization is only possible after inlining and thereby reducing the modularity of
the code, because it mixes together processing steps from titleFilter and from the de�nition of
records. Therefore, reusing the code creating records would now be harder.

To make titleFilterHandOpt more reusable, we could turn the publisher name into a parame-
ter. However, the new versions of titleFilter cannot be reused as-is if some details of the inlined
code change; for instance, we might need to �lter publishers di�erently or not at all. On the other
hand, if we express queries modularly, we might lose some opportunities for optimization. The
design of the collections API, both in Scala and in typical languages, forces us to manually optimize
our code by repeated inlining and subsequent application of query optimization rules, which leads
to a loss of modularity.
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def titleFilterHandOpt(books: Set[Book],
publisher: String ,
keyword: String) =

for {
book ← books
if book.publisher == publisher && book.title.contains(keyword)
author ← book.authors

} yield (book.title , author.firstName + " " + author.lastName)
val res = titleFilterHandOpt(books ,

"Pearson Education", "Principles")

Figure 2.3: Composition of queries in Fig. 2.2, after inlining, query unnesting and hoisting.
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Chapter 3

Automatic optimization with
SQuOpt

The goal of S�Opt is to let programmers write queries modularly and at a high level of abstraction
and deal with optimization by a dedicated domain-speci�c optimizer. In our concrete example,
programmers should be able to write queries similar to the one in Fig. 2.2, but get the e�ciency of
the one in Fig. 2.3. To allow this, S�Opt overloads for-comprehensions and other constructs, such
as string concatenation with + and �eld access book.author. Our overloads of these constructs
reify the query as an expression tree. S�Opt can then optimize this expression tree and execute
the resulting optimized query. Programmers explicitly trigger processing by S�Opt, by adapting
their queries as we describe in next subsection.

3.1 Adapting a Query
To use S�Opt instead of native Scala queries, we �rst assume that the query does not use side e�ects
and is thus purely functional. We argue that purely functional queries are more declarative. Side
e�ects are used to improve performance, but S�Opt makes that unnecessary through automatic
optimizations. In fact, the lack of side e�ects enables more optimizations.

In Fig. 3.1 we show a version of our running example adapted to use S�Opt. We �rst discuss
changes to records. To enable S�Opt, a programmer needs to (a) import the S�Opt library,
(b) import some wrapper code speci�c to the types the collection operates on, in this case Book
and Author (more about that later), (c) convert explicitly the native Scala collections involved to
collections of our framework by a call to asSquopt, (d) rename a few operators such as == to ==#
(this is necessary due to some Scala limitations), and (e) add a separate step where the query is
evaluated (possibly after optimization). All these changes are lightweight and mostly of a syntactic
nature.

For parameterized queries like titleFilter, we need to also adapt type annotations. The
ones in titleFilterQuery reveal some details of our implementation: Expressions that are rei�ed
have type Exp[T] instead of T. As the code shows, resQuery is optimized before compilation.
This call will perform the optimizations that we previously did by hand and will return a query
equivalent to that in Fig. 2.3, after verifying their safety conditions. For instance, after inlining,
the �lter if book.title.contains(keyword) does not reference author; hence, it is safe to hoist.
Note that checking this safety condition would not be possible without reifying the predicate. For
instance, it would not be su�cient to only reify the calls to the collection API, because the predicate
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import squopt._
import schema.squopt._

val recordsQuery =
for {

book ← books.asSquopt
if book.publisher ==# "Pearson Education"
author ← book.authors

} yield new BookData(book.title , author.firstName + " " + author.lastName ,
book.authors.size - 1)

//. . .
val records = recordsQuery.eval

def titleFilterQuery(records: Exp[Set[BookData]], keyword: Exp[String ]) = for {
record ← records
if record.title.contains(keyword)

} yield (record.title , record.authorName)

val resQuery = titleFilterQuery(recordsQuery , "Principles")
val res = resQuery.optimize.eval

Figure 3.1: S�Opt version of Fig. 2.2; recordQuery contains a rei�cation of the query, records
its result.
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is represented as a boolean function parameter. In general, our automatic optimizer inspects the
whole rei�cation of the query implementation to check that optimizations do not introduce changes
in the overall result of the query and are therefore safe.

3.2 Indexing
S�Opt also supports the transparent usage of indexes. Indexes can further improve the e�ciency
of queries, sometimes by orders of magnitude. In our running example, the query scans all books to
look for the ones having the right publisher. To speed up this query, we can preprocess books to
build an index, that is, a dictionary mapping, from each publisher to a collection of all the books it
published. This index can then be used to answer the original query without scanning all books.

We construct a query representing the desired dictionary, and inform the optimizer that it should
use this index where appropriate:

val idxByPublisher = books.asSquopt.indexBy(_.publisher)
Optimization.addIndex(idxByPublisher)

The indexBy collection method accepts a function that maps a collection element to a key;
coll.indexBy(key) returns a dictionary mapping each key to the collection of all elements of
coll having that key. Missing keys are mapped to an empty collection.1 Optimization.addIndex
simply preevaluates the index and updates a dictionary mapping the index to its preevaluated result.

A call to optimize on a query will then take this index into account and rewrite the query to
perform index lookup instead of scanning, if possible. For instance, the code in Fig. 3.1 would be
transparently rewritten by the optimizer to a query similar to the following:

val indexedQuery =
for {

book ← idxByPublisher("Pearson Education")
author ← book.authors

} yield new BookData(book.title , author.firstName + " " + author.lastName ,
book.authors.size - 1)

Since dictionaries in Scala are functions, in the above code, dictionary lookup on idxByPublisher
is represented simply as function application. The above code iterates over books having the desired
publisher, instead of scanning the whole library, and performs the remaining computation from the
original query. Although the index use in the listing above is notated as idxByPublisher("Pearson Education"),
only the cached result of evaluating the index is used when the query is executed, not the rei�ed
index de�nition.

This optimization could also be performed manually, of course, but the queries are on a higher
abstraction level and more maintainable if indexing is de�ned separately and applied automatically.
Manual application of indexing is a crosscutting concern because adding or removing an index
a�ects potentially many queries. S�Opt does not free the developer from the task of assessing
which index will ‘pay o�’ (we have not considered automatic index creation yet), but at least it
becomes simple to add or remove an index, since the application of the indexes is modularized in
the optimizer.

1For readers familiar with the Scala collection API, we remark that the only di�erence with the standard groupBy method
is the handling of missing keys.
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Chapter 4

Implementing SQuOpt

After describing how to use S�Opt, we explain how S�Opt represents queries internally and
optimizes them. Here we give only a brief overview of our implementation technique; it is described
in more detail in Sec. 5.1.

4.1 Expression Trees
In order to analyze and optimize collection queries at runtime, S�Opt rei�es their syntactic
structure as expression trees. The expression tree re�ects the syntax of the query after desugaring,
that is, after for-comprehensions have been replaced by API calls. For instance, recordsQuery from
Fig. 3.1 points to the following expression tree (with some boilerplate omitted for clarity):

new FlatMap(
new Filter(

new Const(books),
v2 ⇒ new Eq(new Book_publisher(v2),

new Const("Pearson Education"))),
v3 ⇒ new MapNode(

new Book_authors(v3),
v4 ⇒ new BookData(

new Book_title(v3),
new StringConcat(

new StringConcat(
new Author_firstName(v4),
new Const(" ")),

new Author_lastName(v4)),
new Plus(new Size(new Book_authors(v3)),

new Negate(new Const (1))))))

The structure of the for-comprehension is encoded with the FlatMap, Filter and MapNode
instances. These classes correspond to the API methods that for-comprehensions get desugared
to. S�Opt arranges for the implementation of flatMap to construct a FlatMap instance, etc.
The instances of the other classes encode the rest of the structure of the collection query, that is,
which methods are called on which arguments. On the one hand, S�Opt de�nes classes such
as Const or Eq that are generic and applicable to all queries. On the other hand, classes such as
Book_publisher cannot be prede�ned, because they are speci�c to the user-de�ned types used

19



20 Chapter 4. Implementing SQuOpt

in a query. S�Opt provides a small code generator, which creates a case class for each method
and �eld of a user-de�ned type. Functions in the query are represented by functions that create
expression trees; representing functions in this way is frequently called higher-order abstract syntax
[Pfenning and Elliot, 1988].

We can see that the rei�cation of this code corresponds closely to an abstract syntax tree for
the code which is executed; however, many calls to speci�c methods, like map, are represented by
special nodes, like MapNode, rather than as method calls. For the optimizer it becomes easier to
match and transform those nodes than with a generic abstract syntax tree.

Nodes for collection operations are carefully de�ned by hand to provide them highly generic
type signatures and make them reusable for all collection types. In Scala, collection operations are
highly polymorphic; for instance, map has a single implementation working on all collection types,
like List, Set, and we similarly want to represent all usages of map through instances of a single
node type, namely MapNode. Having separate nodes ListMapNode, SetMapNode and so on would be
inconvenient, for instance when writing the optimizer. However, map on a List[Int] will produce
another List, while on a Set it will produce another Set, and so on for each speci�c collection
type (in �rst approximation); moreover, this is guaranteed statically by the type of map. Yet, thanks
to advanced typesystem features, map is de�ned only once avoiding redundancy, but has a type
polymorphic enough to guarantee statically that the correct return value is produced. Since our
tree representation is strongly typed, we need to have a similar level of polymorphism in MapNode.
We achieved this by extending the techniques described by Odersky and Moors [2009], as detailed
in our technical report [Giarrusso et al., 2012].

We get these expression trees by using Scala implicit conversions in a particular style, which
we adopted from Rompf and Odersky [2010]. Implicit conversions allow to add, for each method
A.foo(B), an overload of Exp[A].foo(Exp[B]). Where a value of type Exp[T] is expected, a value
of type T can be used thanks to other implicit conversions, which wrap it in a Const node. The initial
call of asSquopt triggers the application of the implicit conversions by converting the collection to
the leaf of an expression tree.

It is also possible to call methods that do not return expression trees; however, such method
calls would then only be represented by an opaque MethodCall node in the expression tree, which
means that the code of the method cannot be considered in optimizations.

Crucially, these expression trees are generated at runtime. For instance, the �rst Const contains
a reference to the actual collection of books to which books refers. If a query uses another query,
such as records in Fig. 3.1, then the subquery is e�ectively inlined. The same holds for method calls
inside queries: If these methods return an expression tree (such as the titleFilterQuery method
in Fig. 3.1), then these expression trees are inlined into the composite query. Since the rei�cation
happens at runtime, it is not necessary to predict the targets of dynamically bound method calls: A
new (and possibly di�erent) expression tree is created each time a block of code containing queries
is executed.

Hence, we can say that expression trees represent the computation which is going to be executed
after inlining; control �ow or virtual calls in the original code typically disappear — especially if they
manipulate the query as a whole. This is typical of deeply embedded DSLs like ours, where code
instead of performing computations produces a representation of the computation to perform [Elliott
et al., 2003; Chambers et al., 2010].

This inlining can duplicate computations; for instance, in this code:

val num: Exp[Int] = 10
val square = num * num
val sum = square + square
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evaluating sum will evaluate square twice. Elliott et al. [2003] and we avoid this using common-
subexpression elimination.

4.2 Optimizations
Our optimizer currently supports several algebraic optimizations. Any query and in fact every
rei�ed expression can be optimized by calling the optimize function on it. The ability to optimize
rei�ed expressions that are not queries is useful; for instance, optimizing a function that produces a
query is similar to a “prepared statement” in relational databases.

The optimizations we implemented are mostly standard in compilers [Muchnick, 1997] or
databases:

• Query unnesting merges a nested query into the containing one [Fegaras and Maier, 2000;
Grust and Scholl, 1999], replacing for instance

for {val1 ← (for {val2 ← coll} yield f(val2 ))}
yield g(val1)

with

for {val2 ← coll; val1 = f(val2)} yield g(val1)

• Bulk operation fusion fuses higher-order operators on collections.

• Filter hoisting tries to apply �lters as early as possible; in database query optimization, it is
known as selection pushdown. For �lter hoisting, it is important that the full query is rei�ed,
because otherwise the dependencies of the �lter condition cannot be determined.

• We reduce during optimization tuple/case class accesses: For instance, (a, b)._1 is simpli�ed
to a. This is important because the produced expression does not depend on b; removing this
false dependency can allow, for instance, a �lter containing this expression to be hoisted to a
context where b is not bound.

• Indexing tries to apply one or more of the available indexes to speed up the query.

• Common subexpression elimination (CSE) avoids that the same computation is performed
multiple times; we use techniques similar to Rompf and Odersky [2010].

• Smaller optimizations include constant folding, reassociation of associative operators and
removal of identity maps (coll.map(x ⇒ x), typically generated by the translation of
for-comprehensions).

Each optimization is applied recursively bottom-up until it does not trigger anymore; di�erent
optimizations are composed in a �xed pipeline.

Optimizations are only guaranteed to be semantics-preserving if queries obey the restrictions
we mentioned: for instance, queries should not involve side-e�ects such as assignments or I/O, and
all collections used in queries should implement the speci�cations stated in the collections API.
Obviously the choice of optimizations involves many tradeo�s; for that reason we believe that it is
all the more important that the optimizer is not hard-wired into the compiler but implemented as a
library, with potentially many di�erent implementations.

To make changes to the optimizer more practical, we designed our query representation
so that optimizations are easy to express; restricting to pure queries also helps. For instance,
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�lter fusion can be implemented in few lines of code: just match against expressions of form
coll.filter(pred2).filter(pred1) and rewrite them:1

val mergeFilters = ExpTransformer {
case Sym(Filter(Sym(Filter(collection , pred2)), pred1)) ⇒

coll.filter(x ⇒ pred2(x) && pred1(x))
}

A more complex optimization such as �lter hoisting requires only 20 lines of code.
We have implemented a prototype of the optimizer with the mentioned optimizations. Many

additional algebraic optimizations can be added in future work by us or others; a candidate would be
loop hoisting, which moves out of loops arbitrary computations not depending on the loop variable
(and not just �lters). With some changes to the optimizer’s architecture, it would also be possible to
perform cost-based and dynamic optimizations.

4.3 Query Execution
Calling the eval method on a query will convert it to executable bytecode; this bytecode will be
loaded and invoked by using Java re�ection. We produce a thunk that, when evaluated, will execute
the generated code.

In our prototype we produce bytecode by converting expression trees to Scala code and invoking
on the result the Scala compiler, scalac. Invoking scalac is typically quite slow, and we currently
use caching to limit this concern; however, we believe it is merely an engineering problem to
produce bytecode directly from expression trees, just as compilers do.

Our expression trees contain native Scala values wrapped in Const nodes, and in many cases
one cannot produce Scala program text evaluating to the same value. To allow executing such
expression trees we need to implement cross-stage persistence (CSP): the generated code will be a
function, accepting the actual values as arguments [Rompf and Odersky, 2010]. This allows sharing
the compiled code for expressions which di�er only in the embedded values.

More in detail, our compilation algorithm is as follows. (a) We implement CSP by replacing em-
bedded Scala values by references to the function arguments; so for instance List(1, 2, 3).map(x ⇒ x + 1)
becomes the function (s1: List[Int], s2: Int) ⇒ s1.map(x ⇒ x + s2). (b) We look up
the produced expression tree, together with the types of the constants we just removed, in a cache
mapping to the generated classes. If the lookup fails we update the cache with the result of the next
steps. (c) We apply CSE on the expression. (d) We convert the tree to code, compile it and load the
generated code.

Preventing errors in generated code Compiler errors in generated code are typically a con-
cern; with S�Opt, however, they can only arise due to implementation bugs in S�Opt (for
instance in pretty-printing, which cannot be checked statically), so they do not concern users. Since
our query language and tree representation are statically typed, type-incorrect queries will be
rejected statically. For instance, consider again idxByPublisher, described previously:

val idxByPublisher = books.asSquopt.indexBy(_.publisher)

Since Book.publisher returns a String, idxByPublisher has type Exp[Map[String, Book]].
Looking up a key of the wrong type, for instance by writing idxByPublisher(book) where
book: Book, will make scalac emit a static type error.

1Sym nodes are part of the boilerplate we omitted earlier.
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A deep EDSL for collection queries

In this chapter we discuss collections as a critical case study [Flyvbjerg, 2006] for deep DSL embed-
ding.

As discussed in the previous chapter, to support optimizations we require a deep embedding of
the collections DSL.

While the basic idea of deep embedding is well known, it is not obvious how to realize deep
embedding when considering the following additional goals:

• To support users adopting S�Opt, a generic S�Opt query should share the “look and feel”
of the ordinary collections API: In particular, query syntax should remain mostly unchanged.
In our case, we want to preserve Scala’s for-comprehension1 syntax and its notation for
anonymous functions.

• Again to support users adopting S�Opt, a generic S�Opt query should not only share
the syntax of the ordinary collections API; it should also be well-typed if and only if the
corresponding ordinary query is well-typed. This is particularly challenging in the Scala
collections library due to its deep integration with advanced type-system features, such as
higher-kinded generics and implicit objects [Odersky and Moors, 2009]. For instance, calling
map on a List will return a List, and calling map on a Set will return a Set. Hence the object-
language representation and the transformations thereof should be as “typed” as possible.
This precludes, among others, a �rst-order representation of object-language variables as
strings.

• S�Opt should be interoperable with ordinary Scala code and Scala collections. For instance,
it should be possible to call normal non-rei�ed functions within a S�Opt query, or mix
native Scala queries and S�Opt queries.

• The performance of S�Opt queries should be reasonable even without optimizations. A
non-optimized S�Opt query should not be dramatically slower than a native Scala query.
Furthermore, it should be possible to create new queries at run time and execute them without
excessive overhead. This goal limits the options of applicable interpretation or compilation
techniques.

We think that these challenges characterize deep embedding of queries on collections as a
critical case study [Flyvbjerg, 2006] for DSL embedding. That is, it is so challenging that embedding

1Also known as for expressions [Odersky et al., 2011, Ch. 23].
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techniques successfully used in this case are likely to be successful on a broad range of other DSLs.
In this chapter we report, from the case study, the successes and failures of achieving these goals in
S�Opt.

5.1 Implementation: Expressing the interface in Scala
To optimize a query as described in the previous section, S�Opt needs to reify, optimize and
execute queries. Our implementation assigns responsibility for these steps to three main components:
A generic library for rei�cation and execution of general Scala expressions, a more specialized
library for rei�cation and execution of query operators, and a dedicated query optimizer. Queries
need then to be executed through either compilation (already discussed in Sec. 4.3) or interpretation
(to discuss in Sec. 5.6). We describe the implementation in more detail in the rest of this section.
The full implementation is also available online2.

A core idea of S�Opt is to reify Scala code as a data structure in memory. A programmer could
directly create instances of that data structure, but we also provide a more convenient interface
based on advanced Scala features such as implicit conversions and type inference. That interface
allows to automatically reify code with a minimum of programmer annotations, as shown in the
examples in Chapter 3. Since this is a case study on Scala’s support for deep embedding of DSLs,
we also describe in this section how Scala supports our task. In particular, we report on techniques
we used and issues we faced.

5.2 Representing expression trees
In the previous section, we have seen that expressions that would have type T in a native Scala
query are rei�ed and have type Exp[T] in S�Opt. The generic type Exp[T] is the base for our
rei�cation of Scala expression as expression trees, that is, as data structures in memory. We provide
a subclass of Exp[T] for every di�erent form of expression we want to reify. For example, in Fig. 2.2
the expression author.firstName + " " + author.lastName must be rei�ed even though it is
not collection-related, for otherwise the optimizer could not see whether author is used. Knowing
this is needed for instance to remove variables which are bound but not used. Hence, this expression
is rei�ed as

StringConcat(StringConcat(AuthorFirstName(author), Const(" ")), AuthorLastName(author ))

This example uses the constructors of the following subclasses of Exp[T] to create the expression
tree.

case class Const[T](t: T) extends Exp[T]
case class StringConcat(str1: Exp[String], str2: Exp[String ]) extends Exp[String]
case class AuthorFirstName(t: Exp[Author ]) extends Exp[String]
case class AuthorLastName(t: Exp[Author ]) extends Exp[String]

Expression nodes additionally implement support code for tree traversals to support optimiza-
tions, which we omit here.

This representation of expression trees is well-suited for a representation of the structure of
expressions in memory and also for pattern matching (which is automatically supported for case
classes in Scala), but inconvenient for query writers. In fact, in Fig. 3.1, we have seen that S�Opt
provides a much more convenient front-end: The programmer writes almost the usual code for type
T and S�Opt converts it automatically to Exp[T].

2h�p://www.informatik.uni-marburg.de/~pgiarrusso/S�Opt

http://www.informatik.uni-marburg.de/~pgiarrusso/SQuOpt


Chapter 5. A deep EDSL for collection queries 25

5.3 Lifting �rst-order expressions
We call the process of converting from T to Exp[T] lifting. Here we describe how we lift �rst-order
expressions – Scala expressions that do not contain anonymous function de�nitions.

To this end, consider again the fragment

author.firstName + " " + author.lastName

now in the context of the S�Opt-enabled query in Fig. 3.1. It looks like a normal Scala expression,
even syntactically unchanged from Fig. 2.2. However, evaluating that code in the context of Fig. 3.1
does not concatenate any strings, but creates an expression tree instead. Although the code looks
like the same expression, it has a di�erent type, Exp[String] instead of String. This di�erence in
the type is caused by the context: The variable author is now bound in a S�Opt-enabled query
and therefore has type Exp[Author] instead of Author. We can still access the firstName �eld of
author, because expression trees of type Exp[T] provide the same interface as values of type T,
except that all operations return expressions trees instead of values.

To understand how an expression tree of type Exp[T] can have the same interface as a value of
type T, we consider two expression trees str1 and str2 of type Exp[String]. The implementation
of lifting di�ers depending on the kind of expression we want to lift.

Method calls and operators In our example, the operator + should be available on Exp[String],
but not on Exp[Boolean], because + is available on String but not on Boolean. Furthermore, we
want str1 + str2 to have type Exp[String] and to evaluate not to a string concatenation but
to a call of StringConcat, that is, to an expression tree which represents str1 + str2. This is a
somewhat unusual requirement, because usually, the interface of a generic type does not depend on
the type parameters.

To provide such operators and to encode expression trees, we use implicit conversions in a
similar style as Rompf and Odersky [2010]. Scala allows to make expressions of a type T implicitly
convertible to a di�erent type U. To this end, one must declare an implicit conversion function
having type T ⇒ U. Calls to such functions will be inserted by the compiler when required to �x
a type mismatch between an expression of type T and a context expecting a value of type U. In
addition, a method call e.m(args) can trigger the conversion of e to a type where the method m is
present3. Similarly, an operator usage, as in str1 + str2, can also trigger an implicit conversion:
an expression using an operator, like str1 + str2, is desugared to the method call str1.+(str2),
which can trigger an implicit conversion from str1 to a type providing the + method. Therefore
from now on we do not distinguish between operators and methods.

To provide the method + on Exp[String], we de�ne an implicit conversion from Exp[String]
to a new type providing a + method which creates the appropriate expression node.

implicit def expToStringOps(t: Exp[String ]) = new StringOps(t)
class StringOps(t: Exp[String ]) {

def +(that: Exp[String ]): Exp[String] = StringConcat(t, that)
}

This is an example of the well-known Scala enrich-my-library pattern4 [Odersky, 2006].
With these declarations in scope, the Scala compiler rewrites str1 + str2 to expToStringOps(str1).+(str2),

which evaluates to StringConcat(str1, str2) as desired. The implicit conversion function
expToStringOps is not applicable to Exp[Boolean] because it explicitly speci�es the receiver of
the +-call to have type Exp[String]. In other words, expressions like str1 + str2 are now lifted

3For the exact rules, see Odersky et al. [2011, Ch. 21] and Odersky [2011].
4Also known as pimp-my-library pattern.
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on the level of expression trees in a type-safe way. For brevity, we refer to the de�ned operator as
Exp[String].+.

Literal valuesHowever, a string concatenation might also include constants, as in str1 + "foo"
or "bar" + str1. To lift str1 + "foo", we introduce a lifting for constants which wraps them in
a Const node:

implicit def pure[T](t: T): Exp[T] = Const(t)

The compiler will now rewrite str1 + "foo" to expToStringOps(str1) + pure("foo"), and
str1 + "foo" + str2 to expToStringOps(str1) + pure("foo") + str2. Di�erent implicit
conversions cooperate successfully to lift the expression.

Analogously, it would be convenient if the similar expression "bar" + str1 would be rewritten
to expToStringOps(pure("bar")) + str1, but this is not the case, because implicit coercions are
not chained automatically in Scala. Instead, we have to manually chain existing implicit conversions
into a new one:

implicit def toStringOps(t: String) = expToStringOps(pure(t))

so that "bar" + str1 is rewritten to toStringOps("bar") + str1.
User-de�ned methods Calls of user-de�ned methods like author.firstName are lifted the

same way as calls to built-in methods such as string concatenation shown earlier. For the running
example, the following de�nitions are necessary to lift the methods from Author to Exp[Author].

package schema.squopt

implicit def expToAuthorOps(t: Exp[Author ]) = new AuthorOps(t)
implicit def toAuthorOps(t: Author) = expToAuthorOps(pure(t))

class AuthorOps(t: Exp[Author ]) {
def firstName: Exp[String] = AuthorFirstName(t)
def lastName: Exp[String] = AuthorLastName(t)

}

Implicit conversions for user-de�ned types cooperate with other ones; for instance, author.firstName + " " + author.lastName
is rewritten to

(expToStringOps(expToAuthorOps(author ). firstName) + pure(" ")) +
expToAuthorOps(author ). lastName

Author is not part of S�Opt or the standard Scala library, but an application-speci�c class,
hence S�Opt cannot pre-de�ne the necessary lifting code. Instead, the application programmer
needs to provide this code to connect S�Opt to his application. To support the application
programmer with this tedious task, we provide a code generator which discovers the interface
of a class through re�ection on its compiled version and generates the boilerplate code such as
the one above for Author. It also generates the application-speci�c expression tree types such as
AuthorFirstName as shown in Sec. 5.2. In general, query writers need to generate and import the
boilerplate lifting code for all application-speci�c types they want to use in a S�Opt query.

If desired, we can exclude some methods to restrict the language supported in our deeply
embedded programs. For instance, S�Opt requires the user to write side-e�ect-free queries, hence
we do not lift methods which perform side e�ects.

Using similar techniques, we can also lift existing functions and implicit conversions.
Tuples and other generic constructors The techniques presented above for the lifting of

method calls rely on overloading the name of the method with a signature that involves Exp. Implicit
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resolution (for method calls) will then choose our lifted version of the function or method to satisfy
the typing requirements of the context or arguments of the call. Unfortunately, this technique does
not work for tuple constructors, which, in Scala, are not resolved like ordinary calls. Instead, support
for tuple types is hard-wired into the language, and tuples are always created by the prede�ned
tuple constructors.

For example, the expression (str1, str2) will always call Scala’s built-in Tuple2 constructor
and correspondingly have type (Exp[String], Exp[String]). We would prefer that it calls a
lifting function and produces an expression tree of type Exp[(String, String)] instead.

Even though we cannot intercept the call to Tuple2, we can add an implicit conversion to be
called after the tuple is constructed.

implicit def tuple2ToTuple2Exp[A1, A2](tuple: (Exp[A1], Exp[A2])): LiftTuple2[A1, A2] =
LiftTuple2[A1, A2](tuple._1, tuple._2)

case class LiftTuple2[A1, A2](t1: Exp[A1], t2: Exp[A2]) extends Exp[(A1, A2)]

We generate such conversions for di�erent arities with a code generator. These conversions
will be used only when the context requires an expression tree. Note that this technique is only
applicable because tuples are generic and support arbitrary components, including expression trees.

In fact, we use the same technique also for other generic constructors to avoid problems
associated with shadowing of constructor functions. For example, an implicit conversion is used
to lift Seq[Exp[T]] to Exp[Seq[T]]: code like Seq(str1, str2) �rst constructs a sequence of
expression trees and then wraps the result with an expression node that describes a sequence.

Subtyping So far, we have seen that for each �rst-order method m operating on instances of T,
we can create a corresponding method which operates on Exp[T]. If the method accepts parameters
having types A1, . . . , An and has return type R, the corresponding lifted method will accept
parameters having types Exp[A1], . . . , Exp[An] and return type Exp[R]. However, Exp[T]
also needs to support all methods that T inherits from its super-type S. To ensure this, we declare
the type constructor Exp to be covariant in its type parameter, so that Exp[T] correctly inherits
the liftings from Exp[S]. This works even with the enrich-my-library pattern because implicit
resolution respects subtyping in an appropriate way.

Limitations of Lifting Lifting methods of Any or AnyRef (Scala types at the root of the inheri-
tance hierarchy) is not possible with this technique: Exp[T] inherits such methods and makes them
directly available, hence the compiler will not insert an implicit conversion. Therefore, it is not
possible to lift expressions such as x == y; rather, we have to rely on developer discipline to use
==\# and !=\# instead of == and !=.

An expression like "foo" + "bar" + str1 is converted to

toStringOps("foo" + "bar") + str1

Hence, part of the expression is evaluated before being rei�ed. This is harmless here since we want
"foo" + "bar" to be evaluated at compile-time, that is constant-folded, but in other cases it is
preferable to prevent the constant folding. We will see later examples where queries on collections
are evaluated before rei�cation, defeating the purpose of our framework, and how we work around
those.

5.4 Lifting higher-order expressions
We have shown how to lift �rst-order expressions; however, the interface of collections also uses
higher-order methods, that is, methods that accept functions as parameters, and we need to lift them
as well to reify the complete collection EDSL. For instance, the map method applies a function to



28 Chapter 5. A deep EDSL for collection queries

each element of a collection. In this section, we describe how we reify such expressions of function
type.

Higher-order abstract syntax To represent functions, we have to represent the bound vari-
ables in the function bodies. For example, a rei�cation of str ⇒ str + "!" needs to reify the
variable str of type String in the body of the anonymous function. This rei�cation should
retain the information where str is bound. We achieve this by representing bound variables us-
ing higher-order abstract syntax (HOAS) [Pfenning and Elliot, 1988], that is, we represent them
by variables bound at the meta level. To continue the example, the above function is rei�ed as
(str: Exp[String]) ⇒ str + "!". Note how the type of str in the body of this version is
Exp[String], because str is a rei�ed variable now. Correspondingly, the expression str + "!" is
lifted as described in the previous section.

With all operations in the function body automatically lifted, the only remaining syntactic
di�erence between normal and lifted functions is the type annotation for the function’s parameter.
Fortunately, Scala’s local type inference can usually deduce the argument type from the context, for
example, from the signature of the map operation being called. Type inference plays a dual role here:
First, it allows the query writer to leave out the annotation, and second, it triggers lifting in the
function body by requesting a lifted function instead of a normal function. This is how in Fig. 3.1, a
single call to asSquopt triggers lifting of the overall query.

Note that rei�ed functions have type Exp[A] ⇒ Exp[B] instead of the more regular Exp[A ⇒ B].
We chose the former over the latter to support Scala’s syntax for anonymous functions and for-
comprehensions which is hard-coded to produce or consume instances of the pre-de�ned A ⇒ B
type. We have to re�ect this irregularity in the lifting of methods and functions by treating the
types of higher-order arguments accordingly.

User-de�ned methods, revised We can now extend the lifting of signatures for methods or
functions from the previous section to the general case, that is, the case of higher-order functions.
We lift a method or function with signature

def m[A1, ..., An](a1: T1, ..., an: Tn): R

to a method or function with the following signature.

def m[A1, ..., An](a1: Li�nT1o, ..., an: Li�nTno): Li�nRo
As before, the de�nition of the lifted method or function will return an expression node representing
the call. If the original was a function, the lifted version is also de�ned as a function. If the original
was a method on type T, then the lifted version is enriched onto T.

The type transformation Li� converts the argument and return types of the method or function
to be lifted. For most types, Li� just wraps the type in the Exp type constructor, but function
types are treated specially: Li� recursively descends into function types to convert their arguments
separately. Overall, Li� behaves as follows.

Li�n(A1,. . . , An) ⇒ R]o =
(Li�nA1o, ... , Li�nAno ⇒ Li�nRo

Li�nAo = Exp[A]

We can use this extended de�nition of method lifting to implement map lifting for Lists, that is,
a method with signature Exp[List[T]].map(Exp[T] ⇒ Exp[U]):

implicit def expToListOps[T](coll: Exp[List[T]]) = new ListOps(coll)
implicit def toListOps[T](coll: List[T]) = expToListOps(coll)

class ListOps(coll: Exp[List[T]]) {
def map[U](f: Exp[T] ⇒ Exp[U]) = ListMapNode(coll , Fun(f))
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val records = books.
withFilter(book ⇒ book.publisher == "Pearson Education").
flatMap(book ⇒ book.authors.
map(author ⇒ BookData(book.title , author.firstName + " " + author.lastName ,

book.authors.size - 1)))

Figure 5.1: Desugaring of code in Fig. 2.2.

}

case class ListMapNode[T, U](coll: Exp[List[T]], mapping: Exp[T ⇒ U]) extends Exp[List[U]]

Note how map’s parameter f has type Exp[T] ⇒ Exp[U] as necessary to enable Scala’s syntax
for anonymous functions and automatic lifting of the function body. This implementation would
work for queries on lists, but does not support other collection types or queries where the collection
type changes. We show in Sec. 5.5 how S�Opt integrates with such advanced features of the Scala
Collection EDSL.

5.5 Lifting collections
In this section, we �rst explain how for-comprehensions are desugared to calls to library functions,
allowing an external library to give them a di�erent meaning. We summarize afterwards needed
information about the subset of the Scala collection EDSL that we reify. Then we present how we
perform this rei�cation. We �nally present the rei�cation of the running example (Fig. 3.1).

For-comprehensions As we have seen, an idiomatic encoding in Scala of queries on collections
are for-comprehensions. Although Scala is an impure functional language and supports side-e�ectful
for-comprehensions, only pure queries are supported in our framework, because this enables or
simpli�es many domain-speci�c analyses. Hence we will restrict our attention to pure queries.

The Scala compiler desugars for-comprehensions into calls to three collection methods, map,
flatMap and withFilter, which we explain shortly; the query in Fig. 2.2 is desugared to the code
in Fig. 5.1.

The compiler performs type inference and type checking on a for-comprehension only after
desugaring it; this a�ords some freedom for the types of map, flatMap and withFilter methods.

The Scala Collection EDSL A Scala collection containing elements of type T implements the
trait Traversable[T]. On an expression coll of type Traversable[T] one can invoke methods
declared (in �rst approximation) as follows:

def map[U](f: T ⇒ U): Traversable[U]
def flatMap[U](f: T ⇒ Traversable[U]): Traversable[U]
def withFilter[U](p: T ⇒ Boolean ): Traversable[T].

For a Scala collection coll, the expression coll.map(f) applies f to each element of coll,
collects the results in a new collection and returns it; coll.flatMap(f) applies f to each element
of coll, concatenates the results in a new collection and returns it; coll.withFilter(p) produces
a collection containing the elements of coll which satisfy the predicate p.

However, Scala supports many di�erent collection types, and this complicates the actual types of
these methods. Each collection can further implement subtraits like Seq[T] <: Traversable[T]
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(for sequences), Set[T] <: Traversable[T] (for sets) and Map[K, V] <: Traversable[(K, V)]
(for dictionaries); for each such trait, di�erent implementations are provided.

One consequence of this syntactic desugaring is that a single for-comprehension can operate
over di�erent collection types. The type of the result depends essentially on the type of the root
collection, that is books in the example above. The example above can hence be altered to produce
a sequence rather than a set by simply converting the root collection to another type:

val recordsSeq = for {
book ← books.toSeq
if book.publisher == "Pearson Education"
author ← book.authors

} yield BookData(book.title , author.firstName + " " + author.lastName ,
book.authors.size - 1)

Precise static typing The Scala collections EDSL achieves precise static typing while avoiding
code duplication [Odersky and Moors, 2009]. Precise static typing is necessary because the return
type of a query operation can depend on subtle details of the base collection and query arguments.
To return the most speci�c static type, the Scala collection DSL de�nes a type-level relation between
the source collection type, the element type for the transformed collection, and the type for the
resulting collection. The relation is encoded through the concept pattern [Oliveira et al., 2010], i.e.,
through a type-class-style trait CanBuildFrom[From, Elem, To], and elements of the relation are
expressed as implicit instances.

For example, a �nite map can be treated as a set of pairs so that mapping a function from
pairs to pairs over it produces another �nite map. This behavior is encoded in an instance of type
CanBuildFrom[Map[K, V], (K1, V1), Map[K1, V1]. The Map[K, V] is the type of the base
collection, (K1, V1) is the return type of the function, and Map[K1, V1] is the return type of the
map operation.

It is also possible to map some other function over the �nite map, but the result will be a
general collection instead of a �nite map. This behavior is described by an instance of type
CanBuildFrom[Traversable[T], U, Traversable[U]. Note that this instance is also applicable
to �nite maps, because Map is a subclass of Traversable. Together, these two instances describe
how to compute the return type of mapping over a �nite map.

Code reuse Even though these two use cases for mapping over a �nite map have di�erent return
types, they are implemented as a single method that uses its implicit CanBuildFrom parameter to
compute both the static type and the dynamic representation of its result. So the Scala Collections
EDSL provides precise typing without code duplication. In our deep embedding, we want to preserve
this property.

CanBuildFrom is used in the implementation of map, flatMap and withFilter. To further
increase reuse, the implementations are provided in a helper trait TraversableLike[T, Repr],
with the following signatures:

def map[U](f: T ⇒ U)( implicit cbf: CanBuildFrom[Repr , U, That ]): That
def flatMap[U](f: T ⇒ Traversable[U])( implicit cbf: CanBuildFrom[Repr , U, That ]): That
def withFilter[U](p: T ⇒ Boolean ): Repr.

The Repr type parameter represents the speci�c type of the receiver of the method call.
The lifting The basic idea is to use the enrich-my-library pattern to lift collection methods

from TraversableLike[T, Repr] to TraversableLikeOps[T, Repr]:

implicit def expToTraversableLikeOps[T, Repr](v: Exp[TraversableLike[T, Repr ]]) =
new TraversableLikeOps[T, Repr](v)
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class TraversableLikeOps[T, Repr <: Traversable[T] with TraversableLike[T, Repr ]](t: Exp[Repr]) {
val t: Exp[Repr]

def withFilter(f: Exp[T] ⇒ Exp[Boolean ]): Exp[Repr] = Filter(this.t, FuncExp(f))

def map[U, That <: TraversableLike[U, That ]](f: Exp[T] ⇒ Exp[U])
(implicit c: CanBuildFrom[Repr , U, That ]): Exp[That] = MapNode(this.t, FuncExp(f))

//. . . other methods . . .
}
// definitions of MapNode , Filter omitted.

Figure 5.2: Lifting TraversableLike

Subclasses of TraversableLike[T, Repr] also subclass both Traversable[T] and Repr; to
take advantage of this during interpretation and optimization, we need to restrict the type of
expToTraversableLikeOps, getting the following conversion:5

implicit def expToTraversableLikeOps
[T, Repr <: Traversable[T] with TraversableLike[T, Repr ]](v: Exp[Repr]) =

new TraversableLikeOps[T, Repr](v)

The query operations are de�ned in class TraversableLikeOps[T, Repr]; a few examples are
shown in Fig. 5.2.6

Note how the lifted query operations use CanBuildFrom to compute the same static return type
as the corresponding non-lifted query operation would compute. This reuse of type-level machinery
allows S�Opt to provide the same interface as the Scala Collections EDSL.

Code reuse, revisited We already saw how we could reify List[T].map through a speci�c
expression node, ListMapNode. However, this approach would require generating many variants
for di�erent collections with slightly di�erent types; writing an optimizer able to handle all such
variations would be unfeasible because of the amount of code duplication required. Instead, by
reusing Scala type-level machinery, we obtain a rei�cation which is statically typed and at the same
time avoids code duplication in both our lifting and our optimizer, and in general in all possible
consumers of our rei�cation, making them feasible to write.

5.6 Interpretation
After optimization, S�Opt needs to interpret the optimized expression trees to perform the query.
Therefore, the trait Exp[T] declares a def interpret(): T method, and each expression node
overrides it appropriately to implement a mostly standard typed, tagless [Carette et al., 2009],
environment-based interpreter. The interpreter computes a value of type T from an expression tree
of type Exp[T]. This design allows query writers to extend the interpreter to handle application-
speci�c operations. In fact, the lifting generator described in Sec. 5.4 automatically generates
appropriate de�nitions of interpret for the lifted operations.

5Due to type inference bugs, the actual implicit conversion needs to be slightly more complex, to mention T directly in
the argument type. We reported the bug at h�ps://issues.scala-lang.org/browse/SI-5298.

6Similar liftings are introduced for traits similar to TraversableLike, like SeqLike, SetLike, MapLike, and so on.

https://issues.scala-lang.org/browse/SI-5298
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For example, the interpretation of string concatenation is simply string concatenation, as shown
in the following fragment of the interpreter. Note that type-safety of the interpreter is checked
automatically by the Scala compiler when it compiles the fragments.

case class StringConcat(str1: Exp[String], str2: Exp[String ]) extends Exp[String] {
def interpret () = str1.interpret () + str2.interpret ()

}

The subset of Scala we reify roughly corresponds to a typed lambda calculus with subtyping and
type constructors. It does not include constructs for looping or recursion, so it should be strongly
normalizing as long as application programmers do not add expression nodes with non-terminating
interpretations. However, query writers can use the host language to create a rei�ed expression of
in�nite size. This should not be an issue if S�Opt is used as a drop-in replacement for the Scala
Collection EDSL.

During optimization, nodes of the expression tree might get duplicated, and the interpreter
could, in principle, observe this sharing and treat the expression tree as a DAG, to avoid recomputing
results. Currently, we do not exploit this, unlike during compilation.

5.7 Optimization
Our optimizer is structured as a pipeline of di�erent transformations on a single intermediate
representation, constituted by our expression trees. Each phase of the pipeline, and the pipeline
as a whole, produce a new expression having the same type as the original one. Most of our
transformations express simple rewrite rules with or without side conditions, which are applied
on expression trees from the bottom up and are implemented using Scala’s support for pattern
matching [Emir et al., 2007b].

Some optimizations, like �lter hoisting (which we applied manually to produce the code in
Fig. 2.3), are essentially domain-speci�c and can improve complexity of a query. To enable such
optimizations to trigger, however, one needs often to perform inlining-like transformations and to
simplify the result. Inlining-related transformation can for instance produce code like (x, y)._1,
which we simplify to x, reducing abstraction overhead but also (more importantly) making syn-
tactically clear that the result does not depend on y, hence might be computed before y is even
bound. This simpli�cation extends to user-de�ned product types; with de�nitions in Fig. 2.1 code
like BookData(book.title, . . . ).title is simpli�ed to book.title.

We have implemented thus optimizations of three classes:

• general-purpose simpli�cations, like inlining, compile-time beta-reduction, constant folding
and reassociation on primitive types, and other simpli�cations7;

• domain-speci�c simpli�cations, whose main goal is still to enable more important optimiza-
tions;

• domain-speci�c optimizations which can change the complexity class of a query, such as
�lter hoisting, hash-join transformation or indexing.

Among domain-speci�c simpli�cations, we implement a few described in the context of the
monoid comprehension calculus [Grust and Scholl, 1996b; Grust, 1999], such as query unnesting
and fusion of bulk operators. Query unnesting allows to unnest a for comprehension nested inside
another, and produce a single for-comprehension. Furthermore, we can fuse di�erent collection

7Beta-reduction and simpli�cation are run in a �xpoint loop [Peyton Jones and Marlow, 2002]. Termination is guaranteed
because our language does not admit general recursion.
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operations together: collection operators like map, flatMap and withFilter can be expressed as
folds producing new collections which can be combined. Scala for-comprehension are however
more general than monoid comprehensions8, hence to ensure safety of some optimizations we need
some additional side conditions9.

Manipulating functionsTo be able to inspect a HOAS function body funBody: Exp[S] ⇒ Exp[T],
like str ⇒ str + "!", we convert it to �rst-order abstract syntax (FOAS), that is to an expression
tree of type Exp[T]. To this end, we introduce a representation of variables and a generator of fresh
ones; since variable names are auto-generated, they are internally represented simply as integers
instead of strings for e�ciency.

To convert funBody from HOAS to FOAS we apply it to a fresh variable v of type TypedVar[S],
obtaining a �rst-order representation of the function body, having type Exp[T], and containing
occurrences of v.

This transformation is hidden into the constructor Fun, which converts Exp[S] ⇒ Exp[T],
a representation of an expression with one free variable, to Exp[S ⇒ T], a representation of a
function.

case class App[S, T](f: Exp[S ⇒ T], t: Exp[S]) extends Exp[T]
def Fun[-S, +T](f: Exp[S] ⇒ Exp[T]): Exp[S ⇒ T] = {

val v = Fun.gensym[S]()
FOASFun(funBody(v), v)

}
case class FOASFun[S, T](val foasBody: Exp[T], v: TypedVar[S]) extends Exp[S ⇒ T]
implicit def app[S, T](f: Exp[S ⇒ T]): Exp[S] ⇒ Exp[T] =

arg ⇒ App(f, arg)

Conversely, function applications are represented using the constructor App; an implicit conver-
sion allows App to be inserted implicitly. Whenever f can be applied to arg and f is an expression
tree, the compiler will convert f(arg) to app(f)(arg), that is App(f, arg).

In our example, Fun(str ⇒ str + "!") produces
FOASFun(StringConcat(TypedVar[String](1), Const("!")), TypedVar[String](1)).

Since we auto-generate variable names, it is easiest to implement represent variable occurrences
using the Barendregt convention, where bound variables must always be globally unique; we must
be careful to perform renaming after beta-reduction to restore this invariant [Pierce, 2002, Ch. 6].

We can now easily implement substitution and beta-reduction and through that, as shown
before, enable other optimizations to trigger more easily and speedup queries.

8For instance, a for-comprehension producing a list cannot iterate over a set.
9For instance, consider a for-comprehension producing a set and nested inside another producing a list. This comprehen-

sion does not correspond to a valid monoid comprehension (see previous footnote), and query unnesting does not apply
here: if we unnested the inner comprehension into the outer one, we would not perform duplicate elimination on the inner
comprehension, a�ecting the overall result.
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Chapter 6

Evaluating SQuOpt

The key goals of S�Opt are to reconcile modularity and e�ciency. To evaluate this claim, we
perform a rigorous performance evaluation of queries with and without S�Opt. We also analyze
modularization potential of these queries and evaluate how modularization a�ects performance
(with and without S�Opt).

We show that modularization introduces a signi�cant slowdown. The overhead of using S�Opt
is usually moderate, and optimizations can compensate this overhead, remove the modularization
slowdown and improve performance of some queries by orders of magnitude, especially when
indexes are used.

6.1 Study Setup
Throughout this chapter, we have already shown several compact queries for which our optimiza-
tions increase performance signi�cantly compared to a naive execution. Since some optimizations
change the complexity class of the query (e.g. by using an index), so the speedups grow with the
size of the data. However, to get a more realistic evaluation of S�Opt, we decided to perform an
experiment with existing real-world queries.

As we are interested in both performance and modularization, we have a speci�cation and three
di�erent implementations of each query that we need to compare:

(0) Query speci�cation: We selected a set of existing real-world queries speci�ed and imple-
mented independently from our work and prior to it. We used only the speci�cation of these
queries.

(1) Modularized Scala implementation: We reimplemented each query as an expression on
Scala collections — our baseline implementation. For modularity, we separated reusable
domain abstractions into subqueries. We con�rmed the abstractions with a domain expert
and will later illustrate them to emphasize their general nature.

(2) Hand-optimized Scala implementation: Next, we asked a domain expert to performed
manual optimizations on the modularized queries. The expert should perform optimizations,
such as inlining and �lter hoisting, where he could �nd performance improvements.

(3) S�Opt implementation: Finally, we rewrote the modularized Scala queries from (1) as
S�Opt queries. The rewrites are of purely syntactic nature to use our library (as described
in Sec. 3.1) and preserve the modularity of the queries.
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Since S�Opt supports executing queries with and without optimizations and indexes, we
measured actually three di�erent execution modes of the S�Opt implementation:

(3−) S�Opt without optimizer: First, we execute the S�Opt queries without performing
optimization �rst, which should show the S�Opt overhead compared to the modular Scala
implementation (1). However, common-subexpression elimination is still used here, since
it is part of the compilation pipeline. This is appropriate to counter the e�ects of excessive
inlining due to using a deep embedding, as explained in Sec. 4.1.

(3o ) S�Opt with optimizer: Next, we execute S�Opt queries after optimization.

(3x ) S�Opt with optimizer and indexes: Finally, we execute the queries after providing a set
of indexes that the optimizer can consider.

In all cases, we measure query execution time for the generated code, excluding compilation:
we consider this appropriate because the results of compilations are cached aggressively and can be
reused when the underlying data is changed, potentially even across executions (even though this
is not yet implemented), as the data is not part of the compiled code.

We use additional indexes in (3x ), but not in the hand-optimized Scala implementation (2). We
argue that indexes are less likely to be applied manually, because index application is a crosscutting
concern and makes the whole query implementation more complicated and less abstract. Still, we
o�er measurement (3o ) to compare the speedup without additional indexes.

This gives us a total of �ve settings to measure and compare (1, 2, 3−, 3o , and 3x ). Between
them, we want to observe the following interesting performance ratios (speedups or slowdowns,
computed through the indicated divisions):

(M) Modularization overhead (the relative performance di�erence between the modularized and
the hand-optimized Scala implementation: 1/2).

(S) S�Opt overhead (the overhead of executing unoptimized S�Opt queries: 1/3−; smaller is
better).

(H) Hand-optimization challenge (the performance overhead of our optimizer against hand-
optimizations of a domain expert: 2/3o ; bigger is better). This overhead is partly due to the
S�Opt overhead (S) and partly to optimizations which have not been automated or have
not been e�ective enough. This comparison excludes the e�ects of indexing, since this is
an optimization we did not perform by hand; we also report (H’) = 2/3x , which includes
indexing.

(O) Optimization potential (the speedup by optimizing modularized queries: 1/3o ; bigger is
better).

(X) Index in�uence (the speedup gained by using indexes: 3o/3x ) (bigger is better).

(T) Total optimization potential with indexes (1/3x ; bigger is better), which is equal to (O) × (X ).

In Fig. 6.1, we provide an overview of the setup. We made our raw data available and our results
reproducible [Vitek and Kalibera, 2011].1



Chapter 6. Evaluating SQuOpt 37

SQuOpt  
with optimizer 

Modularized  
Scala 

Implementation 

Hand-opt. 
Scala 

Implementation 

SQuOpt  
without optimizer 

SQuOpt  
with optimizer 

and indexes 

Reference 
Implementation/ 

Specification 

0 1 2 

3- 3o 3x 

S 
O 

M 

T H 

X 

Legend:               derived from                    comparison 

Figure 6.1: Measurement Setup: Overview

6.2 Experimental Units
As experimental units, we sampled a set of queries on code structures from FindBugs 2.0 [Hovemeyer
and Pugh, 2004]. FindBugs is a popular bug-�nding tool for Java Bytecode available as open source.
To detect instances of bug patterns, it queries a structural in-memory representation of a code
base (extracted from bytecode). Concretely, a single loop traverses each class and invokes all
visitors (implemented as listeners) on each element of the class. Many visitors, in turn, perform
activities concerning multiple bug detectors which are fused together. An extreme example is that,
in FindBugs, query 4 is de�ned in class DumbMethods together with other 41 bug detectors for
distinct types of bugs. Typically a bug detector is furthermore scattered across the di�erent methods
of the visitor, which handle di�erent elements of the class. We believe this architecture has been
chosen to achieve good performance; however, we do not consider such manual fusion of distinct
bug detectors together as modular. We selected queries from FindBugs because they represent
typical non-trivial queries on in-memory collections and because we believe our framework allows
expressing them more modularly.

We sampled queries in two batches. First, we manually selected 8 queries (from approx.
400 queries in FindBugs), chosen mainly to evaluate the potential speedups of indexing (queries
that primarily looked for declarations of classes, methods, or �elds with speci�c properties, queries
that inspect the type hierarchy, and queries that required analyzing methods implementation).
Subsequently, we randomly selected a batch of 11 additional queries. The batch excluded queries
that rely on control-/data�ow analyses (i.e., analyzing the e�ect of bytecode instructions on the
stack), due to limitations of the bytecode tookit we use. In total, we have 19 queries as listed in
Table 6.2 (the randomly selected queries are marked with the superscript R).

We implemented each query three times (see implementations (1)–(3) in Sec. 6.1) following the
speci�cations given in the FindBugs documentation (0). Instead of using a hierarchy of visitors as the
original implementations of the queries in FindBugs, we wrote the queries as for-comprehensions in
Scala on an in-memory representation created by the Scala toolkit BAT.2 BAT in particular provides
comprehensive support for writing queries against Java bytecode in an idiomatic way. We exemplify
an analysis in Fig. 6.5: It detects all co-variant equals methods in a project by iterating over all
class �les (line 2) and all methods, searching for methods named “equals” that return a boolean

1Data available at: h�p://www.informatik.uni-marburg.de/~pgiarrusso/S�Opt
2h�p://github.com/Delors/BAT

http://www.informatik.uni-marburg.de/~pgiarrusso/SQuOpt
http://github.com/Delors/BAT
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M (1/2) S (1/3−) H (2/3o ) H’ (2/3x ) O (1/3o ) X (3o/3x ) T (1/3x )

Geometric means of
performance ratios 2.4x 1.2x 0.8x 5.1x 1.9x 6.3x 12x

Table 6.3: Average performance ratios. This table summarizes all interesting performance ratios
across all queries, using the geometric mean [Fleming and Wallace, 1986]. The meaning of speedups
is discussed in Sec. 6.1.

Abstraction Used
All �elds in all class �les 4
All methods in all class �les 3
All method bodies in all class �les 3
All instructions in all method bodies and their
bytecode index

5

Sliding window (size n) over all instructions (and
their index)

3

Table 6.4: Description of abstractions removed during hand-optimization and number of queries
where the abstraction is used (and optimized away).

value and de�ne a single parameter of the type of the current class.
Abstractions In the reference implementations (1), we identi�ed several reusable abstractions

as shown in Table 6.4. The reference implementations of all queries except 17R use exactly one of
these abstractions, which encapsulate the main loops of the queries.

Indexes For executing (3x ) (S�Opt with indexes), we have constructed three indexes to speed
up navigation over the queried data of queries 1–8: Indexes for method name, exception handlers,
and instruction types. We illustrate the implementation of the method-name index in Fig. 6.6: it
produces a collection of all methods and then indexes them using indexBy; its argument extracts
from an entry the key, that is the method name. We selected which indexes to implement using
guidance from S�Opt itself; during optimizations, S�Opt reports which indexes it could have
applied to the given query. Among those, we tried to select indexes giving a reasonable compromise
between construction cost and optimization speedup. We �rst measured the construction cost of
these indexes:

for {
classFile ← classFiles.asSquopt
method ← classFile.methods
if method.isAbstract && method.name ==# "equals" &&

method.descriptor.returnType ==# BooleanType
parameterTypes ← Let(method.descriptor.parameterTypes)
if parameterTypes.length ==# 1 && parameterTypes (0) ==# classFile.thisClass

} yield (classFile , method)

Figure 6.5: Find covariant equals methods.
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val methodNameIdx: Exp[Map[String , Seq[(ClassFile , Method )]]] = (for {
classFile ← classFiles.asSquopt
method ← classFile.methods

} yield (classFile , method )). indexBy(entry ⇒ entry._2.name)

Figure 6.6: A simple index de�nition

Index Elapsed time (ms)
Method name 97.99±2.94
Exception handlers 179.29±3.21
Instruction type 4166.49±202.85

For our test data, index construction takes less than 200 ms for the �rst two indexes, which is
moderate compared to the time for loading the bytecode in the BAT representation (4755.32±141.66).
Building the instruction index took around 4 seconds, which we consider acceptable since this index
maps each type of instruction (e.g. INSTANCEOF) to a collection of all bytecode instructions of that
type.

6.3 Measurement Setup
To measure performance, we executed the queries on the preinstalled JDK class library (rt.jar),
containing 58M of uncompressed Java bytecode. We also performed a preliminary evaluation by
running queries on the much smaller ScalaTest library, getting comparable results that we hence do
not discuss. Experiments were run on a 8-core Intel Core i7-2600, 3.40 GHz, with 8 GB of RAM,
running Scienti�c Linux release 6.2. The benchmark code itself is single-threaded, so it uses only one
core; however the JVM used also other cores to o�oad garbage collection. We used the preinstalled
OpenJDK Java version 1.7.0_05-icedtea and Scala 2.10.0-M7.

We measure steady-state performance as recommended by Georges et al. [2007]. We invoke
the JVM p = 15 times; at the beginning of each JVM invocation, all the bytecode to analyze is
loaded in memory and converted into BAT’s representation. In each JVM invocation, we iterate
each benchmark until the variations of results becomes low enough. We measure the variations of
results through the coe�cient of variation (CoV; standard deviation divided by the mean). Thus, we
iterate each benchmark until the CoV in the last k = 10 iterations drops under the threshold θ = 0.1,
or until we complete q = 50 iterations. We report the arithmetic mean of these measurements (and
also report the usually low standard deviation on our web page).

6.4 Results
Correctness We machine-checked that for each query, all variants in Table 6.2 agree.

Modularization Overhead We �rst observe that performance su�ers signi�cantly when using
the abstractions we described in Table 6.4. These abstractions, while natural in the domain and in the
setting of a declarative language, are not idiomatic in Java or Scala because, without optimization,
they will obviously lead to bad performance. They are still useful abstractions from the point of
view of modularity, though — as indicated by Table 6.4 — and as such it would be desirable if one
could use them without paying the performance penalty.
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Scala Implementations vs. FindBugs Before actually comparing between the di�erent Scala
and S�Opt implementations, we �rst ensured that the implementations are comparable to the
original FindBugs implementation. A direct comparison between the FindBugs reference implemen-
tation and any of our implementations is not possible in a rigorous and fair manner. FindBugs bug
detectors are not fully modularized, therefore we cannot reasonably isolate the implementation
of the selected queries from support code. Furthermore, the architecture of the implementation
has many di�erences that a�ect performance: among others, FindBugs also uses multithreading.
Moreover, while in our case each query loops over all classes, in FindBugs, as discussed above, a
single loop considers each class and invokes all visitors (implemented as listeners) on it.

We measured startup performance [Georges et al., 2007], that is the performance of running
the queries only once, to minimize the e�ect of compiler optimizations. We setup our S�Opt-
based analyses to only perform optimization and run the optimized query. To setup FindBugs, we
manually disabled all unrelated bug detectors; we also made the modi�ed FindBugs source code
available. The result is that the performance of the Scala implementations of the queries (3−) has
performance of the same order of magnitude as the original FindBugs queries – in our tests, the
S�Opt implementation was about twice as fast. However, since the comparison cannot be made
fair, we refrained from a more detailed investigation.

SQuOpt Overhead and Optimization Potential We present the results of our benchmarks
in Table 6.2. Column names refer to a few of the de�nitions described above; for readability, we do
not present all the ratios previously introduced for each query, but report the raw data. In Table 6.3,
we report the geometric mean Fleming and Wallace [1986] of each ratio, computed with the same
weight for each query.

We see that, in its current implementation, S�Opt can cause a overhead S (1/3−) up to 3.4x.
On average S�Opt queries are 1.2x faster. These di�erences are due to minor implementation
details of certain collection operators. For query 18R , instead, we have that the the basic S�Opt
implementation is 12.9x faster and are investigating the reason; we suspect this might be related to
the use of pattern matching in the original query.

As expected, not all queries bene�t from optimizations; out of 19 queries, optimization a�ords
for 15 of them signi�cant speedups ranging from a 1.2x factor to a 12800x factor; 10 queries are
faster by a factor of at least 5. Only queries 10R , 11R and 12R fail to recover any modularization
overhead.

We have analyzed the behavior of a few queries after optimization, to understand why their
performance has (or has not) improved.

Optimization makes query 17R slower; we believe this is because optimization replaces �ltering
by lazy �ltering, which is usually faster, but not here. Among queries where indexing succeeds,
query 2 has the least speedup. After optimization, this query uses the instruction-type index to
�nd all occurrences of invocation opcodes (INVOKESTATIC and INVOKEVIRTUAL); after this step the
query looks, among those invocations, for ones targeting runFinalizersOnExit. Since invocation
opcodes are quite frequent, the used index is not very speci�c, hence it allows for little speedup
(9.5x). However no other index applies to this query; moreover, our framework does not maintain
any selectivity statistics on indexes to predict these e�ects. Query 19R bene�ts from indexing
without any speci�c tuning on our part, because it looks for implementations of finalize with
some characteristic, hence the highly selective method-name index applies. After optimization,
query 8 becomes simply an index lookup on the index for exception handlers, looking for handlers
of IllegalMonitorStateException; it is thus not surprising that its speedup is thus extremely
high (12800x). This speedup relies on an index which is speci�c for this kind of query, and building
this index is slower than executing the unoptimized query. On the other hand, building this index is
entirely appropriate in a situation where similar queries are common enough. Similar considerations
apply to usage of indexing in general, similarly to what happens in databases.



42 Chapter 6. Evaluating SQuOpt

Optimization Overhead The current implementation of the optimizer is not yet optimized
for speed (of the optimization algorithm). For instance, expression trees are traversed and rebuilt
completely once for each transformation. However, the optimization overhead is usually not
excessive and is 54.8 ± 85.5 ms, varying between 3.5 ms and 381.7 ms (mostly depending on the
query size).

Limitations Although many speedups are encouraging, our optimizer is currently a proof-of-
concept and we experienced some limitations:

• In a few cases hand-optimized queries are still faster than what the optimizer can produce.
We believe these problems could be addressed by adding further optimizations.

• Our implementation of indexing is currently limited to immutable collections. For mutable
collections, indexes must be maintained incrementally. Since indexes are de�ned as special
queries in S�Opt, incremental index maintenance becomes an instance of incremental
maintenance of query results, that is, of incremental view maintenance. We plan to support
incremental view maintenance as part of future work; however, indexing in the current form
is already useful, as illustrated by our experimental results.

Threats to Validity With rigorous performance measurements and the chosen setup, our study
was setup to maximize internal and construct validity. Although we did not involve an external
domain expert and we did not compare the results of our queries with the ones from FindBugs (except
while developing the queries), we believe that the queries adequately represent the modularity and
performance characteristics of FindBugs and S�Opt. However, since we selected only queries
from a single project, external validity is limited. While we cannot generalize our results beyond
FindBugs yet, we believe that the FindBugs queries are representative for complex in-memory
queries performed by applications.

Summary We demonstrated on our real-world queries that relying on declarative abstractions
in collection queries often causes a signi�cant slowdown. As we have seen, using S�Opt without
optimization, or when no optimizations are possible, usually provides performance comparable
to using standard Scala; however, S�Opt optimizations can in most cases remove the slowdown
due to declarative abstractions. Furthermore, relying on indexing allows to achieve even greater
speedups while still using a declarative programming style. Some implementation limitations
restrict the e�ectiveness of our optimizer, but since this is a preliminary implementation, we believe
our evaluation shows the great potential of optimizing queries to in-memory collections.
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Discussion

In this chapter we discuss the degree to which S�Opt ful�lled our original design goals, and the
conclusions for host and domain-speci�c language design.

7.1 Optimization limitations
In our experiments indexing achieved signi�cant speedups, but when indexing does not apply
speedups are more limited; in comparison, later projects working on collection query optimization,
such as OptiQL [Rompf et al., 2013; Sujeeth et al., 2013b], gave better speedups, as also discussed in
Sec. 8.3.1.

A design goal of this project was to incrementalize optimized queries, and while it is easy to
incrementalize collection operators such as map, flatMap or filter, it was much less clear to us
how to optimize the result of inlining. We considered using shortcut fusion, but we did not know
a good way to incrementalize the resulting programs; later work, as described in Part II, clari�ed
what is possible and what not.

Another problem is that most fusion techniques are designed for sequential processing, hence
con�ict with incrementalization. Most fusion techniques generally assume bulk operations scan
collections in linear order. For instance, shortcut fusion rewrites operators in terms of foldr.
During parallel and/or incremental computation, instead, it is better to use tree-shaped folds: that is,
to split the task in a divide-and-conquer fashion, so that the various subproblems form a balanced
tree. This division minimizes the height of the tree, hence the number of steps needed to combine
results from subproblems into the �nal result, as also discussed by Steele [2009]. It is not so clear
how to apply shortcut fusion to parallel and incremental programs. Maier and Odersky [2013]
describe an incremental tree-shaped fold, where each subproblem that is small enough is solved by
scanning its input in linear order, but does not perform code transformation and does not study
how to perform fusion.

7.2 Deep embedding

7.2.1 What worked well
Several features of Scala contributed greatly to the success we achieved. With implicit conversions,
the lifting can be made mostly transparent. The advanced type system features were quite helpful
to make the expression tree representation typed. The fact that for-comprehensions are desugared
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before type inference and type checking was also a prerequisite for automatic lifting. The syntactic
expressiveness and uniformity of Scala, in particular the fact that custom types can have the same
look-and-feel as primitive types, were also vital to lift expressions on primitive types.

7.2.2 Limitations
Despite these positive experiences and our experimental success, our embedding has a few signi�cant
limitations.

The �rst limitation is that we only lift a subset of Scala, and some interesting features are missing.
We do not support statements in nested blocks in our queries, but this could be implemented reusing
techniques from Delite [Rompf et al., 2011]. More importantly for queries, pattern matching cannot
be supported by deep embedding similar to ours. In contrast to for-comprehension syntax, pattern
matching is desugared only after type checking Emir et al. [2007b], which prevents us from lifting
pattern matching notation. More speci�cally, because an extractor Emir et al. [2007b] cannot return
the representation of a result value (say Exp[Boolean]) to later evaluate; it must produce its �nal
result at pattern matching time. There is initial work on “virtualized pattern matching”1, and we
hope to use this feature in future work.

We also experienced problems with operators that cannot be overloaded, such as == or if-else
and with lifting methods in scala.Any, which forced us to provide alternative syntax for these
features in queries. The Scala-virtualized project [Moors et al., 2012] aims to address these limitations;
unfortunately, it advertises no change on the other problems we found, which we subsequently
detail.

It would also be desirable if we could enforce the absence of side e�ects in queries, but since
Scala, like most practical programming languages except Haskell, does not track side e�ects in the
type system this does not seem to be possible.

Finally, compared to lightweight modular staging [Rompf and Odersky, 2010] (the foundation of
Delite) and to polymorphic embedding [Hofer et al., 2008], we have less static checking for some
programming errors when writing queries; the recommended way to use Delite is to write a EDSL
program in one trait, in terms of the EDSL interface only, and combine it with the implementation
in another trait. In polymorphic embedding, the EDSL program is a function of the speci�c imple-
mentation (in this case, semantics). Either approach ensures that the DSL program is parametric in
the implementation, and hence cannot refer to details of a speci�c implementation. However, we
judged the syntactic overhead for the programmer to be too high to use those techniques – in our
implementation we rely on encapsulation and on dynamic checks at query construction time to
achieve similar guarantees.

The choice of interpreting expressions turned out to be a signi�cant performance limitation. It
could likely be addressed by using Delite and lightweight modular staging instead, but we wanted
to experiment with how far we can get within the language in a well-typed setting.

7.2.3 What did not work so well: Scala type inference
When implementing our library, we often struggled against limitations and bugs in the Scala
compiler, especially regarding type inference and its interaction with implicit resolution, and we
were often constrained by its limitations. Not only Scala’s type inference is not complete, but we
learned that its behavior is only speci�ed by the behavior of the current implementation: in many
cases where there is a clear desirable solution, type inference fails or �nds an incorrect substitution
which leads to a type error. Hence we cannot distinguish, in the discussion, the Scala language from
its implementation. We regard many of Scala’s type inference problems as bugs, and reported them

1h�p://stackoverflow.com/questions/8533826/what-is-scalas-experimental-virtual-pa�ern-matcher

http://stackoverflow.com/questions/8533826/what-is-scalas-experimental-virtual-pattern-matcher
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as such when no previous bug report existed, as noted in the rest of this section. Some of them are
long-standing issues, others of them were accepted, for other ones we received no feedback yet
at the time of this writing, and another one was already closed as WONTFIX, indicating that a �x
would be possible but have excessive complexity for the time being.2.

Overloading The code in Fig. 3.1 uses the lifted BookData constructor. Two de�nitions of
BookData are available, with signatures BookData(String, String, Int) and BookData(Exp[String], Exp[String], Exp[Int]),
and it seems like the Scala compiler should be able to choose which one to apply using overload
resolution. This however is not supported simply because the two functions are de�ned in di�erent
scopes3, hence importing BookData(Exp[String], Exp[String], Exp[Int]) shadows locally
the original de�nition.

Type inference vs implicit resolution The interaction between type inference and implicit
resolution is a hard problem, and Scalac has also many bugs, but the current situation requires
further research; for instance, there is not even a speci�cation for the behavior of type inference4.

As a consequence, to the best of our knowledge some properties of type inference have not
been formally established. For instance, a reasonable user expectation is that removing a call to an
implicit conversion does not alter the program, if it is the only implicit conversion with the correct
type in scope, or if it is more speci�c than the others [Odersky et al., 2011, Ch. 21]. This is not
always correct, because removing the implicit conversion reduces the information available for the
type inference algorithm; we observed multiple cases5 where type inference becomes unable to
�gure out enough information about the type to trigger implicit conversion.

We also consider signi�cant that Scala 2.8 required making both type inference and implicit
resolution more powerful, speci�cally in order to support the collection library [Moors, 2010;
Odersky et al., 2011, Sec. 21.7]; further extensions would be possible and desirable. For instance,
if type inference were extended with higher-order uni�cation6 [Pfenning, 1988], it would better
support a part of our DSL interface (not discussed in this chapter) by removing the need for type
annotations.

Nested patternmatches for GADTs in Scala Writing a typed decomposition for Exp requires
pattern-matching support for generalized algebraic datatypes (GADTs). We found that support
for GADTs in Scala is currently insu�cient. Emir et al. [2007b] de�ne the concept of typecasing,
essentially a form of pattern-matching limited to non-nested patterns, and demonstrate that Scala
supports typecasing on GADTs in Scala by demonstrating a typed evaluator; however, typecasing
is rather verbose for deep patterns, since one has to nest multiple pattern-matching expressions.
When using normal pattern matches, instead, the support for GADT seems much weaker.7 Hence
one has to choose between support for GADT and the convenience of nested pattern matching. A
third alternative is to ignore or disable compiler warnings, but we did not consider this option.

Implicit conversions do not chain While implicit conversions by default do not chain, it is
sometimes convenient to allow chaining selectively. For instance, let us assume a context such that
a: Exp[A], b: Exp[B] and c: Exp[C]. In this context, let us consider again how we lift tuples.
We have seen that the expression (a, b) has type (Exp[A], Exp[B]) but can be converted to
Exp[(A, B)] through an implicit conversion. Let us now consider nested tuples, like ((a, b), c):
it has type ((Exp[A], Exp[B]), Exp[C]), hence the previous conversion cannot be applied to
this expression.

Odersky et al. [2011, Ch. 21] describe a pattern which can address this goal. Using this pattern,
to lift pairs, we must write an implicit conversion from pairs of elements which can be implicitly

2h�ps://issues.scala-lang.org/browse/SI-2551
3h�ps://issues.scala-lang.org/browse/SI-2551
4h�ps://issues.scala-lang.org/browse/SI-5298?focusedCommentId=55971#comment-55971, reported by us.
5h�ps://issues.scala-lang.org/browse/SI-5592, reported by us.
6h�ps://issues.scala-lang.org/browse/SI-2712
7Due to bug h�ps://issues.scala-lang.org/browse/SI-5298?focusedCommentId=56840#comment-56840, reported by us.

https://issues.scala-lang.org/browse/SI-2551
https://issues.scala-lang.org/browse/SI-2551
https://issues.scala-lang.org/browse/SI-5298?focusedCommentId=55971##comment-55971
https://issues.scala-lang.org/browse/SI-5592
https://issues.scala-lang.org/browse/SI-2712
https://issues.scala-lang.org/browse/SI-5298?focusedCommentId=56840##comment-56840
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converted to expressions. Instead of requiring (Exp[A], Exp[B]), the implicit conversion should
require (A, B) with the condition that A can be converted to Exp[A’] and B to Exp[B’]. This
conversion solves the problem if applied explicitly, but the compiler refuses to apply it implicitly,
again because of type inference issues8.

Because of this type inference limitations, we failed to provide support for reifying code like
((a, b), c)9.

Error messages for implicit conversions The enrich-my-library pattern has the declared
goal to allow to extend existing libraries transparently. However, implementation details shine
however through when a user program using this feature contains a type error. When invoking
a method would require an implicit conversion which is not applicable, the compiler often just
reports that the method is not available. The recommended approach to debugging such errors is
to manually add the missing implicit conversion and investigating the type error [Odersky et al.,
2011, Ch. 21.8], but this destroys the transparency of the approach when creating or modifying code.
We believe this could be solved in principle by research on error reporting: the compiler could
automatically insert all implicit conversions enabling the method calls and report corresponding
errors, even if at some performance cost.

7.2.4 Lessons for language embedders
Various domains, such as the one considered in our case study, allow powerful domain-speci�c
optimizations. Such optimizations often are hard to express in a compositional way, hence they
cannot be performed while building the query but must be expressed as global optimizations passes.
For those domains, deep embedding is key to allow signi�cant optimizations. On the other hand,
deep embedding requires to implement an interpreter or a compiler.

On the one hand, interpretation overhead is signi�cant in Scala, even when using HOAS to take
advantage of the metalevel implementation of argument access.

Instead of interpreting a program, one can compile a EDSL program to Scala and load it, as
done by Rompf et al. [2011]; while we are using this approach, the disadvantage is the compilation
delay, especially for Scala whose compilation process is complex and time-consuming. Possible
alternatives include generating bytecode directly or combining interpretation and compilations
similarly to tiered JIT compilers, where only code which is executed often is compiled. We plan to
investigate such alternatives in future work.

8h�ps://issues.scala-lang.org/browse/SI-5651, reported by us.
9One could of course write a speci�c implicit conversions for this case; however, (a, (b, c)) requires already a di�erent

implicit conversion, and there are in�nite ways to nest pairs, let alone tuples of bounded arity.

https://issues.scala-lang.org/browse/SI-5651


Chapter 8

Related work

This chapter builds on prior work on language-integrated queries, query optimization, techniques
for DSL embedding, and other works on code querying.

8.1 Language-Integrated Queries
Microsoft’s Language-Integrated Query technology (Linq) [Meijer et al., 2006; Bierman et al., 2007]
is similar to our work in that it also rei�es queries on collections to enable analysis and optimization.
Such queries can be executed against a variety of backends (such as SQL databases or in-memory
objects), and adding new back-ends is supported. Its implementation uses expression trees, a compiler-
supported implicit conversion between expressions and their rei�cation as a syntax tree. There
are various major di�erences, though. First, the support for expression trees is hard-coded into
the compiler. This means that the techniques are not applicable in languages that do not explicitly
support expression trees. More importantly, the way expression trees are created in Linq is generic
and �xed. For instance, it is not possible to create di�erent tree nodes for method calls that are
relevant to an analysis (such as the map method) than for method calls that are irrelevant for
the analysis (such as the toString method). For this reason, expression trees in Linq cannot be
customized to the task at hand and contain too much low-level information. It is well-known that
this makes it quite hard to implement programs operating on expression trees [Eini, 2011].

Linq queries can also not easily be decomposed and modularized. For instance, consider the
task of refactoring the �lter in the query from x in y where x.z == 1 select x into a function.
De�ning this function as bool comp(int v) { return v == 1; } would destroy the possibility
of analyzing the �lter for optimization, since the resulting expression tree would only contain
a reference to an opaque function. The function could be declared as returning an expression
tree instead, but then this function could not be used in the original query anymore, since the
compiler expects an expression of type bool and not an expression tree of type bool. It could only
be integrated if the expression tree of the original query is created by hand, without using the
built-in support for expression trees.

Although queries against in-memory collections could theoretically also be optimized in Linq,
the standard implementation, Linq2Objects, performs no optimizations.

A few optimized embedded DSLs allow executing queries or computations on distributed clusters.
DryadLINQ [Yu et al., 2008], based on Linq, optimizes queries for distributed execution. It inherits
Linq’s limitations and thus does not support decomposing queries in di�erent modules. Modulariz-
ing queries is supported instead by FlumeJava [Chambers et al., 2010], another library (in Java) for
distributed query execution. However, FlumeJava cannot express many optimizations because its
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representation of expressions is more limited; also, its query language is more cumbersome. Both
problems are rooted in Java’s limited support for embedded DSLs. Other embedded DSLs support
parallel platforms such as GPUs or many-core CPUs, such as Delite [Rompf et al., 2013].

Willis et al. [2006, 2008] add �rst-class queries to Java through a source-to-source translator
and implement a few selected optimizations, including join order optimization and incremental
maintenance of query results. They investigate how well their techniques apply to Java programs,
and they suggest that programmers use manual optimizations to avoid expensive constructs like
nested loops. While the goal of these works is similar to ours, their implementation as an external
source-to-source-translator makes the adoption, extensibility, and composability of their technique
di�cult.

There have been many approaches for a closer integration of SQL queries into programs, such as
HaskellDB [Leijen and Meijer, 1999] (which also inspired Linq), or Ferry [Grust et al., 2009] (which
moves part of a program execution to a database). In Scala, there are also APIs which integrate SQL
queries more closely such as Slick.1 Its frontend allows to de�ne and combine type-safe queries,
similarly to ours (also in the way it is implemented). However, the language for de�ning queries
maps to SQL, so it does not support nesting collections in other collections (a feature which simpli�ed
our example in Sec. 2.2), nor distinguishes statically between di�erent kinds of collections, such as
Set or Seq. Based on Ferry, ScalaQL [Garcia et al., 2010] extends Scala with a compiler-plugin to
integrate a query language on top of a relational database. The work by Spiewak and Zhao [2009] is
unrelated to [Garcia et al., 2010] but also called ScalaQL. It is similar to our approach in that it also
proposes to reify queries based on for-comprehensions, but it is not clear from their paper how the
rei�cation works.2

8.2 Query Optimization
Query optimization on relational data is a long-standing issue in the database community, but
there are also many works on query optimization on objects [Fegaras and Maier, 2000; Grust, 1999].
Compared to these works, we have only implemented a few simple query optimizations, so there is
potential for further improvement of our work by incorporating more advanced optimizations.

Henglein [2010] and Henglein and Larsen [2010] embed relational algebra in Haskell. Queries
are not rei�ed in their approach, but due to a particularly sophisticated representation of multisets
it is possible to execute some queries containing cross-products using faster equi-joins. While their
approach appears to not rely on non-con�uent rewriting rules and hence appears more robust, it is
not yet clear how to incorporate other optimizations.

8.3 Deep Embeddings in Scala
Technically, our implementation of S�Opt is a deep embedding of a part of the Scala collections
API [Odersky and Moors, 2009]. Deep embeddings were pionereed by Leijen and Meijer [1999] and
Elliott et al. [2003] in Haskell for other applications.

We regard the Scala collections API [Odersky and Moors, 2009] as a shallowly embedded query
DSL. Query operators are eager, that is they immediately perform collection operations when called,
so that it is not possible to optimize queries before execution.

Scala collections also provide views, which are closer to S�Opt. Unlike standard query
operators, they create lazy collections. Like S�Opt, views reify query operators as data structures
and interpret them later. Unlike S�Opt, views are not used for automatic query optimization,

1h�p://slick.typesafe.com/
2We contacted the authors; they were not willing to provide more details or the sources of their approach.

http://slick.typesafe.com/
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but for explicitly changing the evaluation order of collection processing. Moreover, they cannot
be reused by S�Opt as they reify too little: Views embed deeply only the outermost pipeline of
collection operators, while they embed shallowly nested collection operators and other Scala code
in queries, such as arguments of filter, map and flatMap. Deep embedding of the whole query is
necessary for many optimizations, as discussed in Chapter 3.

8.3.1 LMS
Our deep embedding is inspired by some of the Scala techniques presented by Lightweight Modular
Staging (LMS) [Rompf and Odersky, 2010] for using implicits and for adding in�x operators to a
type. Like Rompf and Odersky [2010], we also generate and compile Scala code on-the-�y reusing
the Scala compiler. A plausible alternative backend for S�Opt would have been to use LMS and
Delite [Rompf et al., 2011], a framework for building highly e�cient DSLs in Scala.

An alternative to S�Opt based on LMS and Delite, named OptiQL, was indeed built and
presented in concurrent [Rompf et al., 2013] and subsequent work [Sujeeth et al., 2013b]. Like
S�Opt, OptiQL enables writing and optimizing collection queries in Scala. On the minus side,
OptiQL supports fewer collections types (ArrayList and HashMap).

On the plus side, OptiQL supports queries containing e�ects and can reuse support for automatic
parallelization and multiple platforms present in Delite. While LMS allows embedding e�ectful
queries, it is unclear how many of the implemented optimizations keep being sound on such queries,
and how many of those have been extended to such queries.

OptiQL achieves impressive speedups by fusing collection operations and transforming (or
lowering) high-level bulk operators to highly optimized imperative programs using while loops.
This gains signi�cant advantages because it can avoid boxing, intermediate allocations, and because
inlining heuristics in the Hotspot JIT compiler have never been tuned to bulk operators in functional
programs.3 We did not investigate such lowerings. It is unclear how well these optimizations would
extend to other collections which intrinsically carry further overhead. Moreover, it is unclear how
to execute incrementally the result of these lowerings, as we discuss in Sec. 7.1.

Those works did not support embedding arbitrary libraries in an automated or semi-automated
way; this was only addressed later in Forge [Sujeeth et al., 2013a] and Yin-Yang [Jovanovic et al.,
2014].

Ackermann et al. [2012] present Jet, which also optimizes collection queries but targets MapReduce-
style computations in a distributed environment. Like OptiQL, Jet does not apply typical database
optimizations such as indexing or �lter hoisting.

8.4 Code Querying
In our evaluation we explore the usage of S�Opt to express queries on code and re-implement a
subset of the FindBugs [Hovemeyer and Pugh, 2004] analyses. There are various other specialized
code query languages such as CodeQuest [Hajiyev et al., 2006] or D-CUBED [Wȩgrzynowicz and
Stencel, 2009]. Since these are special-purpose query languages that are not embedded into a host
language, they are not directly comparable to our approach.

3See discussion by Cli� Click at h�p://www.azulsystems.com/blog/cli�/2011-04-04-fixing-the-inlining-problem.

http://www.azulsystems.com/blog/cliff/2011-04-04-fixing-the-inlining-problem
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Chapter 9

Conclusions

We have illustrated the tradeo� between performance and modularity for queries on in-memory
collections. We have shown that it is possible to design a deep embedding of a version of the
collections API which rei�es queries and can optimize them at runtime. Writing queries using this
framework is, except minor syntactic details, the same as writing queries using the collection library,
hence the adoption barrier to using our optimizer is low.

Our evaluation shows that using abstractions in queries introduces a signi�cant performance
overhead with native Scala code, while S�Opt, in most cases, makes the overhead much more
tolerable or removes it completely. Optimizations are not su�cient on some queries, but since
our optimizer is a proof-of-concept with many opportunities for improvement, we believe a more
elaborate version will achieve even better performance and reduce these limitations.

9.1 Future work
To make our DSL more convenient to use, it would be useful to use the virtualized pattern matcher
of Scala 2.10, when it will be more robust, to add support for pattern matching in our virtualized
queries.

Finally, while our optimizations are type-safe, as they rewrite an expression tree to another
of the same type, currently the Scala type-checker cannot verify this statically, because of its
limited support for GADTs. Solving this problem conveniently would allow checking statically that
transformations are safe and make developing them easier.
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Part II

Incremental λ-Calculus
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Chapter 10

Introduction to di�erentiation

Incremental computation (or incrementalization) has a long-standing history in computer sci-
ence [Ramalingam and Reps, 1993]. Often, a program needs to update quickly the output of some
nontrivial function f when the input to the computation changes. In this scenario, we assume we
have computed y1 = f x1 and we need to compute y2 that equals f x2. In this scenario, programmers
typically have to choose between a few undesirable options.

• Programmers can call again function f on the updated input x2 and repeat the computation
from scratch. This choice guarantees correct results and is easy to implement, but typically
wastes computation time. Often, if the updated input is close to the original input, the same
result can be computed much faster.

• Programmers can write by hand a new function df that updates the output based on input
changes, using various techniques. Running a hand-written function df can be much more
e�cient than rerunning f , but writing df requires signi�cant developer e�ort, is error-prone,
and requires updating df by hand to keep it consistent with f whenever f is modi�ed. In
practice, this complicates code maintenance signi�cantly [Salvaneschi and Mezini, 2013].

• Programmers can write f using domain-speci�c languages that support incrementalization,
for tasks where such languages are available. For instance, build scripts (our f ) are written in
domain-speci�c languages that support (coarse-grained) incremental builds. Database query
languages also have often support for incrementalization.

• Programmers can attempt using general-purpose techniques for incrementalizing programs,
such as self-adjusting computation and variants such as Adapton. Self-adjusting computation
applies to arbitrary purely functional programs and has been extended to imperative programs;
however, it only guarantees e�cient incrementalization when applied to base programs that
are designed for e�cient incrementalization. Nevertheless, self-adjusting computation enabled
incrementalizing programs that had never been incrementalized by hand before.

No approach guarantees automatic e�cient incrementalization for arbitrary programs. We
propose instead to design domain-speci�c languages (DSLs) that can be e�ciently incrementalized,
that we call incremental DSLs (IDSLs).

To incrementalize IDSL programs, we use a transformation that we call (�nite) di�erentiation.
Di�erentiation produces programs in the same language, called derivatives, that can be optimized
further and compiled to e�cient code. Derivatives represent changes to values through further
values, that we call simply changes.
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For primitives, IDSL designers must specify the result of di�erentiation: IDSL designers are to
choose primitives that encapsulate e�ciently incrementalizable computation schemes, while IDSL
users are to express their computation using the primitives provided by the IDSL.

Helping IDSL designers to incrementalize primitives automatically is a desirable goal, though
one that we leave open. In our setting, incrementalizing primitives becomes a problem of program
synthesis, and we agree with Shah and Bodik [2017] that it should be treated as such. Among others,
Liu [2000] develops a systematic approach to this synthesis problem for �rst-order programs based
on equational reasoning, but it is unclear how scalable this approach is. We provide foundations for
using equational reasoning, and sketch an IDSL for handling di�erent sorts of collections. We also
discuss avenues at providing language plugins for more fundamental primitives, such as algebraic
datatypes with structural recursion.

In the IDSLs we consider, similarly to database languages, we use primitives for high-level
operations, of complexity similar to SQL operators. On the one hand, IDSL designers wish to design
few general primitives to limit the e�ort needed for manual incrementalization. On the other hand,
overly general primitives can be harder to incrementalize e�ciently. Nevertheless, we also provide
some support for more general building blocks such as product or sum types and even (in some
situations) recursive types. Other approaches provide more support for incrementalizing primitives,
but even then ensuring e�cient incrementalization is not necessarily easy. Dynamic approaches
to incrementalization are most powerful: they can �nd work that can be reused at runtime using
memoization, as long as the computation is structured so that memoization matches will occur.
Moreover, for some programs it seems more e�cient to detect that some output can be reused
thanks to a description of the input changes, rather than through runtime detection.

We propose that IDSLs be higher-order, so that primitives can be parameterized over functions
and hence highly �exible, and purely functional, to enable more powerful optimizations both before
and after di�erentiation. Hence, an incremental DSL is a higher-order purely functional language,
composed of a λ-calculus core extended with base types and primitives. Various database query
languages support forms of �nite di�erentiation (see Sec. 19.2.1), but only over �rst-order languages,
which provide only restricted forms of operators such as map, �lter or aggregation.

To support higher-order IDSLs, we de�ne the �rst form of di�erentiation that supports higher-
order functional languages; to this end, we introduce the concept of function changes, which contain
changes to either the code of a function value or the values it closes over. While higher-order
programs can be transformed to �rst-order ones, incrementalizing resulting programs is still beyond
reach for previous approaches to di�erentiation (see Sec. 19.2.1 for earlier work and Sec. 19.2.2 for
later approaches). In Chapter 17 and Appendix D we transform higher-order programs to �rst-order
ones by closure conversion or defunctionalization, but we incrementalize defunctionalized programs
using similar ideas, including changes to (defunctionalized) functions.

Our primary example will be DSLs for operations on collections: as discussed earlier (Chapter 2),
we favor higher-order collection DSLs over relational databases.

We build our incremental DSLs based on simply-typed λ-calculus (STLC), extended with language
plugins to de�ne the domain-speci�c parts, as discussed in Appendix A.2 and summarized in Fig. A.1.
We call our approach ILC for Incremental Lambda Calculus.

The rest of this chapter is organized as follows. In Sec. 10.1 we explain that di�erentiation
generalizes the calculus of �nite di�erences, a relative of di�erential calculus. In Sec. 10.2 we show
a motivating example for our approach. In Sec. 10.3 we introduce informally the concept of changes
as values, and in Sec. 10.4 we introduce changes to functions. In Sec. 10.5 we de�ne di�erentiation
and motivate it informally. In Sec. 10.6 we apply di�erentiation to our motivating example.

Correctness of ILC is far from obvious. In Chapters 12 and 13, we introduce a formal theory of
changes, and we use it to formalize di�erentiation and prove it correct.
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10.1 Generalizing the calculus of �nite di�erences
Our theory of changes generalizes an existing �eld of mathematics called the calculus of �nite
di�erence: If f is a real function, one can de�ne its �nite di�erence, that is a function ∆f such that
∆f a da = f (a + da) − f a. Readers might notice the similarity (and the di�erences) between the
�nite di�erence and the derivative of f , since the latter is de�ned as

f ′(a) = lim
da→0

f (a + da) − f (a)

da
.

The calculus of �nite di�erences helps computing a closed formula for ∆f given a closed formula
for f . For instance, if function f is de�ned by f x = 2 · x, one can prove its �nite di�erence is
∆f x dx = 2 · (x + dx) − 2 · x = 2 · dx.

Finite di�erences are helpful for incrementalization because they allow computing functions
on updated inputs based on results on base inputs, if we know how inputs change. Take again
for instance f x = 2 · x: if x is a base input and x + dx is an updated input, we can compute
f (x + dx) = f x + ∆f x dx. If we already computed y = f x and reuse the result, we can compute
f (x + dx) = y + ∆f x. Here, the input change is dx and the output change is ∆f x dx.

However, the calculus of �nite di�erences is usually de�ned for real functions. Since it is based
on operators + and −, it can be directly extended to commutative groups. Incrementalization based
on �nite di�erences for groups and �rst-order programs has already been researched [Paige and
Koenig, 1982; Gluche et al., 1997], most recently and spectacularly with DBToaster [Koch, 2010;
Koch et al., 2016].

But it is not immediate how to generalize �nite di�erencing beyond groups. And many useful
types do not form a group: for instance, lists of integers don’t form a group but only a monoid.
Moreover, it’s hard to represent list changes simply through a list: how do we specify which elements
were inserted (and where), which were removed and which were subjected to change themselves?

In ILC, we generalize the calculus of �nite di�erences by using distinct types for base values
and changes, and adapting the surrounding theory. ILC generalizes operators + and − as operators
⊕ (pronounced “oplus” or “update”) and 	 (pronounced “ominus” or “di�erence”). We show how
ILC subsumes groups in Sec. 13.1.1.

10.2 A motivating example
In this section, we illustrate informally incrementalization on a small example.

In the following program, grandTotal xs ys sums integer numbers in input collections xs and ys.

grandTotal :: Bag Z→ Bag Z→ Z
s :: Z
grandTotal xs ys = sum (merge xs ys)
s = grandTotal xs ys

This program computes output s from input collections xs and ys. These collections are multisets
or bags, that is, collections that are unordered (like sets) where elements are allowed to appear more
than once (unlike sets). In this example, we assume a language plugin that supports a base type of
integers Z and a family of base types of bags Bag τ for any type τ .

We can run this program on speci�c inputs xs1 = { {1, 2, 3} } and ys1 = { {4} } to obtain output
s1. Here, double braces { { . . . } } denote a bag containing the elements among the double braces.

s1 = grandTotal xs1 ys1
= sum { {1, 2, 3, 4} } = 10
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This example uses small inputs for simplicity, but in practice they are typically much bigger; we
use n to denote the input size. In this case the asymptotic complexity of computing s is Θ(n).

Consider computing updated output s2 from updated inputs xs2 = { {1, 1, 2, 3} } and ys2 =
{ {4, 5} }. We could recompute s2 from scratch as

s2 = grandTotal xs2 ys2
= sum { {1, 1, 2, 3, 4, 5} } = 16

But if the size of the updated inputs is Θ(n), recomputation also takes time Θ(n), and we would like
to obtain our result asymptotically faster.

To compute the updated output s2 faster, we assume the changes to the inputs have a description
of size dn that is asymptotically smaller than the input size n, that is dn = o(n). All approaches to
incrementalization require small input changes. Incremental computation will then process the
input changes, rather than just the new inputs.

10.3 Introducing changes
To talk about how the di�erences between old values and new values, we introduce a few concepts,
for now without full de�nitions. In our approach to incrementalization, we describe changes to
values as values themselves: We call such descriptions simply changes. Incremental programs
examine changes to inputs to understand how to produce changes to outputs. Just like in STLC
we have terms (programs) that evaluates to values, we also have change terms, which evaluate to
change values. We require that going from old values to new values preserves types: That is, if an
old value v1 has type τ , then also its corresponding new value v2 must have type τ . To each type
τ we associate a type of changes or change type ∆τ : a change between v1 and v2 must be a value
of type ∆τ . Similarly, environments can change: to typing context Γ we associate change typing
contexts ∆Γ, such that we can have an environment change dρ : n∆Γ o from ρ1 : n Γ o to ρ2 : n Γ o.

Not all descriptions of changes are meaningful, so we also talk about valid changes. Valid
changes satisfy additional invariants that are useful during incrementalization. A change value dv
can be a valid change from v1 to v2. We can also consider a valid change as an edge from v1 to v2 in
a graph associated to τ (where the vertexes are values of type τ ), and we call v1 the source of dv and
v2 the destination of dv. We only talk of source and destination for valid changes: so a change from
v1 to v2 is (implicitly) valid. We’ll discuss examples of valid and invalid changes in Examples 10.3.1
and 10.3.2.

We also introduce an operator ⊕ on values and changes: if dv is a valid change from v1 to v2,
then v1 ⊕ dv (read as “v1 updated by dv”) is guaranteed to return v2. If dv is not a valid change from
v1, then v1 ⊕ dv can be de�ned to some arbitrary value or not, without any e�ect on correctness. In
practice, if ⊕ detects an invalid input change it can trigger an error or return a dummy value; in our
formalization we assume for simplicity that ⊕ is total. Again, if dv is not valid from v1 to v1 ⊕ dv,
then we do not talk of the source and destination of dv.

We also introduce operator 	: given two values v1, v2 for the same type, v2 	 v1 is a valid change
from v1 to v2.

Finally, we introduce change composition: if dv1 is a valid change from v1 to v2 and dv2 is a
valid change from v2 to v3, then dv1 } dv2 is a valid change from v1 to v3.

Change operators are overloaded over di�erent types. Coherent de�nitions of validity and of
operators ⊕, 	 and } for a type τ form a change structure over values of type τ (De�nition 13.1.1).
For each type τ we’ll de�ne a change structure (De�nition 13.4.2), and operators will have types
⊕ : τ → ∆τ → τ , 	 : τ → τ → ∆τ , } : ∆τ → ∆τ → ∆τ .
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Example 10.3.1 (Changes on integers and bags)
To show how incrementalization a�ects our example, we next describe valid changes for integers
and bags. For now, a change das to a bag as1 simply contains all elements to be added to the initial
bag as1 to obtain the updated bag as2 (we’ll ignore removing elements for this section and discuss
it later). In our example, the change from xs1 (that is { {1, 2, 3} }) to xs2 (that is { {1, 1, 2, 3} }) is
dxs = { {1} }, while the change from ys1 (that is { {4} }) to ys2 (that is { {4, 5} }) is dys = { {5} }.
To represent the output change ds from s1 to s2 we need integer changes. For now, we represent
integer changes as integers, and de�ne ⊕ on integers as addition: v1 ⊕ dv = v1 + dv. �

For both bags and integers, a change dv is always valid between v1 and v2 = v1 ⊕ dv; for other
changes, however, validity will be more restrictive.

Example 10.3.2 (Changes on naturals)
For instance, say we want to de�ne changes on a type of natural numbers, and we still want to have
v1 ⊕ dv = v1 + dv. A change from 3 to 2 should still be −1, so the type of changes must be Z. But
the result of ⊕ should still be a natural, that is an integer > 0: to ensure that v1 ⊕ dv > 0 we need to
require that dv > −v1. We use this requirement to de�ne validity on naturals: dv B v1 ↪→ v1+dv : N
is de�ned as equivalent to dv > −v1. We can guarantee equation v1 ⊕ dv = v1 + dv not for all
changes, but only for valid changes. Conversely, if a change dv is invalid for v1, then v1 + dv < 0.
We then de�ne v1 ⊕ dv to be 0, though any other de�nition on invalid changes would work.1 �

10.3.1 Incrementalizing with changes
After introducing changes and related notions, we describe how we incrementalize our example
program.

We consider again the scenario of Sec. 10.2: we need to compute the updated output s2, the
result of calling our program grandTotal on updated inputs xs2 and ys2. And we have the initial
output s1 from calling our program on initial inputs xs1 and ys1. In this scenario we can compute
s2 non-incrementally by calling grandTotal on the updated inputs, but we would like to obtain the
same result faster. Hence, we compute s2 incrementally: that is, we �rst compute the output change
ds from s1 to s2; then we update the old output s1 by change ds. Successful incremental computation
must compute the correct s2 asymptotically faster than non-incremental computation. This speedup
is possible because we take advantage of the computation already done to compute s1.

To compute the output change ds from s1 to s2, we propose to transform our base program
grandTotal to a new program dgrandTotal, that we call the derivative of grandTotal: to compute
ds we call dgrandTotal on initial inputs and their respective changes. Unlike other approaches to
incrementalization, dgrandTotal is a regular program in the same language as grandTotal, hence
can be further optimized with existing technology.

Below, we give the code for dgrandTotal and show that in this example incremental computation
computes s2 correctly.

For ease of reference, we recall inputs, changes and outputs:

xs1 = { {1, 2, 3} }
dxs = { {1} }
xs2 = { {1, 1, 2, 3} }
ys1 = { {4} }
dys = { {5} }

1In fact, we could leave ⊕ unde�ned on invalid changes. Our original presentation [Cai et al., 2014], in essence, restricted
⊕ to valid changes through dependent types, by ensuring that applying it to invalid changes would be ill-typed. Later,
Huesca [2015], in similar developments, simply made ⊕ partial on its domain instead of restricting the domain, achieving
similar results.



60 Chapter 10. Introduction to di�erentiation

ys2 = { {4, 5} }
s1 = grandTotal xs1 ys1
= 10

s2 = grandTotal xs2 ys2
= 16

Incremental computation uses the following de�nitions to compute s2 correctly and with fewer
steps, as desired.

dgrandTotal xs dxs ys dys = sum (merge dxs dys)
ds = dgrandTotal xs1 dxs ys1 dys =

= sum { {1, 5} } = 6
s2 = s1 ⊕ ds = s1 + ds

= 10 + 6 = 16

Incremental computation should be asymptotically faster than non-incremental computation;
hence, the derivative we run should be asymptotically faster than the base program. Here, derivative
dgrandTotal is faster simply because it ignores initial inputs altogether. Therefore, its time complexity
depends only on the total size of changes dn. In particular, the complexity of dgrandTotal is
Θ(dn) = o(n).

We generate derivatives through a program transformation from terms to terms, which we call
di�erentiation (or, sometimes, simply derivation). We write D n t o for the result of di�erentiating
term t. We apply D n – o on terms of our non-incremental programs or base terms, such as grandTotal.
To de�ne di�erentiation, we assume that we already have derivatives for primitive functions they
use; we discuss later how to write such derivatives by hand.

We de�ne di�erentiation in De�nition 10.5.1; some readers might prefer to peek ahead, but we
prefer to �rst explain what di�erentiation is supposed to do.

A derivative of a function can be applied to initial inputs and changes from initial inputs to
updated inputs, and returns a change from an initial output to an updated output. For instance,
take derivative dgrandTotal, initial inputs xs1 and ys1, and changes dxs and dys from initial inputs
to updated inputs. Then, change dgrandTotal xs1 dxs ys1 dys, that is ds, goes from initial output
grandTotal xs1 ys1, that is s1, to updated output grandTotal xs2 ys2, that is s2. And because ds goes
from s1 to s2, it follows as a corollary that s2 = s1 ⊕ ds. Hence, we can compute s2 incrementally
through s1 ⊕ ds, as we have shown, rather than by evaluating grandTotal xs2 ys2.

We often just say that a derivative of function f maps changes to the inputs of f to changes to
the outputs of f , leaving the initial inputs implicit. In short:

Slogan 10.3.3
Term D n t o maps input changes to output changes. That is, D n t o applied to initial base inputs and
valid input changes (from initial inputs to updated inputs) gives a valid output change from t applied
on old inputs to t applied on new inputs. �

For a generic unary function f : A→ B, the behavior of D n f o can be described as:

f a2 � f a1 ⊕ D n f o a1 da (10.1)

or as
f (a1 ⊕ da) � f a1 ⊕ D n f o a1 da (10.2)

where da is a metavariable standing for a valid change from a1 to a2 (with a1, a2 : A) and where �
denotes denotational equivalence (De�nition A.2.5). Moreover, D n f o a1 da is also a valid change
and can be hence used as an argument for operations that require valid changes. These equations
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follow from Theorem 12.2.2 and Corollary 13.4.5; we iron out the few remaining details to obtain
these equations in Sec. 14.1.2

In our example, we have applied D n – o to grandTotal, and simplify the result via β-reduction to
produce dgrandTotal, as we show in Sec. 10.6. Correctness of D n – o guarantees that sum (merge dxs dys)
evaluates to a change from sum (merge xs ys) evaluated on old inputs xs1 and ys1 to sum (merge xs ys)
evaluated on new inputs xs2 and ys2.

In this section, we have sketched the meaning of di�erentiation informally. We discuss incre-
mentalization on higher-order terms in Sec. 10.4, and actually de�ne di�erentiation in Sec. 10.5.

10.4 Di�erentiation on open terms and functions
We have shown that applying D n – o on closed functions produces their derivatives. However,
D n – o is de�ned for all terms, hence also for open terms and for non-function types.

Open terms Γ ` t : τ are evaluated with respect to an environment for Γ, and when this
environment changes, the result of t changes as well; D n t o computes the change to t’s output. If Γ `
t : τ , evaluating term D n t o requires as input a change environment dρ : n∆Γ o containing changes
from the initial environment ρ1 : n Γ o to the updated environment ρ2 : n Γ o. The (environment)
input change dρ is mapped by D n t o to output change dv = nD n t o o dρ, a change from initial
output n t o ρ1 to updated output n t o ρ2. If t is a function, dv maps in turn changes to the function
arguments to changes to the function result. All this behavior, again, follows our slogan.

Environment changes contains changes for each variable in Γ. More precisely, if variable x
appears with type τ in Γ and hence in ρ1, ρ2, then dx appears with type ∆τ in ∆Γ and hence in dρ.
Moreover, dρ extends ρ1 to provide D n t o with initial inputs and not just with their changes.

The two environments ρ1 and ρ2 can share entries — in particular, environment change dρ can
be a nil change from ρ to ρ. For instance, Γ can be empty: then ρ1 and ρ2 are also empty (since they
match Γ) and equal, so dρ is a nil change. Alternatively, some or all the change entries in dρ can be
nil changes. Whenever dρ is a nil change, nD n t o o dρ is also a nil change.

If t is a function, D n t o will be a function change. Changes to functions in turn map input
changes to output changes, following our Slogan 10.3.3. If a change df from f1 to f2 is applied (via
df a1 da) to an input change da from a1 to a2, then df will produce a change dv = df a1 da from
v1 = f1 a1 to v2 = f2 a2. The de�nition of function changes is recursive on types: that is, dv can in
turn be a function change mapping input changes to output changes.

Derivatives are a special case of function changes: a derivative df is simply a change from f to f
itself, which maps input changes da from a1 to a2 to output changes dv = df a1 da from f a1 to f a2.
This de�nition coincides with the earlier de�nition of derivatives, and it also coincides with the
de�nition of function changes for the special case where f1 = f2 = f . That is why D n t o produces
derivatives if t is a closed function term: we can only evaluate D n t o against an nil environment
change, producing a nil function change.

Since the concept of function changes can be surprising, we examine it more closely next.

10.4.1 Producing function changes
A �rst-class function can close over free variables that can change, hence functions values themselves
can change; hence, we introduce function changes to describe these changes.

For instance, term tf = λx → x + y is a function that closes over y, so di�erent values v for y
give rise to di�erent values for f =

�
tf
�
(y = v). Take a change dv from v1 = 5 to v2 = 6; di�erent

2Nitpick: if da is read as an object variable, denotational equivalence will detect that these terms are not equivalent if
da maps to an invalid change. Hence we said that da is a metavariable. Later we de�ne denotational equivalence for valid
changes (De�nition 14.1.2), which gives a less cumbersome way to state such equations.



62 Chapter 10. Introduction to di�erentiation

inputs v1 and v2 for y give rise to di�erent outputs f1 =
�
tf
�
(y = v1) and f2 =

�
tf
�
(y = v2). We

describe the di�erence between outputs f1 and f2 through a function change df from f1 to f2.
Consider again Slogan 10.3.3 and how it applies to term f :

Slogan 10.3.3
Term D n t o maps input changes to output changes. That is, D n t o applied to initial base inputs and
valid input changes (from initial inputs to updated inputs) gives a valid output change from t applied
on old inputs to t applied on new inputs. �

Since y is free in tf , the value for y is an input of tf . So, continuing our example, dtf = D
�
tf
�

must map a valid input change dv from v1 to v2 for variable y to a valid output change df from f1 to
f2; more precisely, we must have df =

�
dtf

�
(y = v1, dy = dv).

10.4.2 Consuming function changes
Function changes can not only be produced but also be consumed in programs obtained from D n – o.
We discuss next how.

As discussed, we consider the value for y as an input to tf = λx → x + y. However, we also
choose to consider the argument for x as an input (of a di�erent sort) to tf = λx → x + y, and
we require our Slogan 10.3.3 to apply to input x too. While this might sound surprising, it works
out well. Speci�cally, since df =

�
D
�
tf
� �

is a change from f1 to f2, we require df a1 da to be a
change from f1 a1 to f2 a2, so df maps base input a1 and input change da to output change df a1 da,
satisfying the slogan.

More in general, any valid function change df from f1 to f2 (where f1, f2 : nσ → τ o) must in
turn be a function that takes an input a1 and a change da, valid from a1 to a2, to a valid change
df a1 da from f1 a1 to f2 a2.

This way, to satisfy our slogan on application t = tf x, we can simply de�ne D n – o so that
D
�
tf x

�
= D

�
tf
�
x dx. Then�

D
�
tf x

� �
(y = v1, dy = dv, x = a1, dx = da) =

�
D
�
tf
� �

a1 da = df a1 da.

As required, that’s a change from f1 a1 to f2 a2.
Overall, valid function changes preserve validity, just like D n t o in Slogan 10.3.3, and map valid

input changes to valid output changes. In turn, output changes can be function changes; since they
are valid, they in turn map valid changes to their inputs to valid output changes (as we’ll see in
Lemma 12.1.10). We’ll later formalize this and de�ne validity by recursion on types, that is, as a
logical relation (see Sec. 12.1.4).

10.4.3 Pointwise function changes
It might seem more natural to describe a function change df ′ between f1 and f2 via df ′ x = λx →
f2 x 	 f1 x. We call such a df ′ a pointwise change. While some might �nd pointwise changes a
more natural concept, the output of di�erentiation needs often to compute f2 x2 	 f1 x1, using a
change df from f1 to f2 and a change dx from x1 to x2. Function changes perform this job directly.
We discuss this point further in Sec. 15.3.

10.4.4 Passing change targets
It would be more symmetric to make function changes also take updated input a2, that is, have
df a1 da a2 computes a change from f1 a1 to f2 a2. However, passing a2 explicitly adds no
information: the value a2 can be computed from a1 and da as a1 ⊕ da. Indeed, in various cases
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a function change can compute its required output without actually computing a1 ⊕ da. Since
we expect the size of a1 and a2 is asymptotically larger than da, actually computing a2 could be
expensive.3 Hence, we stick to our asymmetric form of function changes.

10.5 Di�erentiation, informally
Next, we de�ne di�erentiation and explain informally why it does what we want. We then give an
example of how di�erentiation applies to our example. A formal proof will follow soon in Sec. 12.2,
justifying more formally why this de�nition is correct, but we proceed more gently.

De�nition 10.5.1 (Di�erentiation)
Di�erentiation is the following term transformation:

D n λ(x : σ ) → t o = λ(x : σ ) (dx : ∆σ ) → D n t o
D n s t o = D n s o t D n t o

D n x o = dx

D n c o = DC n c o �

where DC n c o de�nes di�erentiation on primitives and is provided by language plugins (see
Appendix A.2.5), and dx stands for a variable generated by pre�xing x’s name with d, so that
D n y o = dy and so on.

If we extend the language with (non-recursive) let-bindings, we can give derived rules for it
such as:

D n let x = t1 in t2 o = let x = t1
dx = D n t1 o

in D n t2 o
In Sec. 15.1 we will explain that the same transformation rules apply for recursive let-bindings.

If t contains occurrences of both (say) x and dx, capture issues arise in D n t o. We defer these
issues to Sec. 12.3.4, and assume throughout that such issues can be avoided by α-renaming and the
Barendregt convention [Barendregt, 1984].

This transformation might seem deceptively simple. Indeed, pure λ-calculus only handles
binding and higher-order functions, leaving “real work” to primitives. Similarly, our transformation
incrementalizes binding and higher-order functions, leaving “real work” to derivatives of primitives.
However, our support of λ-calculus allows to glue primitives together. We’ll discuss later how we
add support to various primitives and families of primitives.

Now we try to motivate the transformation informally. We claimed that D n – o must satisfy
Slogan 10.3.3, which reads

Slogan 10.3.3
Term D n t o maps input changes to output changes. That is, D n t o applied to initial base inputs and
valid input changes (from initial inputs to updated inputs) gives a valid output change from t applied
on old inputs to t applied on new inputs. �

Let’s analyze the de�nition of D n – o by case analysis of input term u. In each case we assume
that our slogan applies to any subterms of u, and sketch why it applies to u itself.

3We show later e�cient change structures where ⊕ reuses part of a1 to output a2 in logarithmic time.
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• if u = x, by our slogan D n x o must evaluate to the change of x when inputs change, so we
set D n x o = dx.

• if u = c, we simply delegate di�erentiation to DC n c o, which is de�ned by plugins. Since
plugins can de�ne arbitrary primitives, they need provide their derivatives.

• if u = λx → t, then u introduces a function. Assume for simplicity that u is a closed term.
Then D n t o evaluates to the change of the result of this function u, evaluated in a context
binding x and its change dx. Then, because of how function changes are de�ned, the change
of u is the change of output t as a function of the base input x and its change dx, that is
D n u o = λx dx → D n t o.

• if u = s t, then s is a function. Assume for simplicity that u is a closed term. Then D n s o
evaluates to the change of s, as a function of D n s o’s base input and input change. So, we
apply D n s o to its actual base input t and actual input change D n t o, and obtain D n s t o =
D n s o t D n t o.

This is not quite a correct proof sketch because of many issues, but we �x these issues with our
formal treatment in Sec. 12.2. In particular, in the case for abstraction u = λx → t, D n t o depends
not only on x and dx, but also on other free variables of u and their changes. Similarly, we must
deal with free variables also in the case for application u = s t. But �rst, we apply di�erentiation to
our earlier example.

10.6 Di�erentiation on our example
To exemplify the behavior of di�erentiation concretely, and help �x ideas for later discussion, in
this section we show how the derivative of grandTotal looks like.

grandTotal = λxs ys→ sum (merge xs ys)
s = grandTotal { {1} } { {2, 3, 4} } = 11

Di�erentiation is a structurally recursive program transformation, so we �rst compute D nmerge xs ys o.
To compute its change we simply call the derivative of merge, that is dmerge, and apply it to the
base inputs and their changes: hence we write

D nmerge xs ys o = dmerge xs dxs ys dys

As we’ll better see later, we can de�ne function dmerge as

dmerge = λxs dxs ys dys→ merge dxs dys

so D nmerge xs ys o can be simpli�ed by β-reduction to merge dxs dys:

D nmerge xs ys o
= dmerge xs dxs ys dys
=β (λxs dxs ys dys→ merge dxs dys) xs dxs ys dys
=β merge dxs dys

Let’s next derive sum (merge xs ys). First, like above, the derivative of sum zs would be
dsum zs dzs, which depends on base input zs and its change dzs. As we’ll see, dsum zs dzs can
simply call sum on dzs, so dsum zs dzs = sum dzs. To derive sum (merge xs ys), we must call
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the derivative of sum, that is dsum, on its base argument and its change, so on merge xs ys and
D nmerge xs ys o. We can later simplify again by β-reduction and obtain

D n sum (merge xs ys) o
= dsum (merge xs ys) D nmerge xs ys o
=β sum D nmerge xs ys o
= sum (dmerge xs dxs ys dys)
=β sum (merge dxs dys)

Here we see the output of di�erentiation is de�ned in a bigger typing context: while merge xs ys
only depends on base inputs xs and ys, D nmerge xs ys o also depends on their changes. This
property extends beyond the examples we just saw: if a term t is de�ned in context Γ, then the
output of derivation D n t o is de�ned in context Γ,∆Γ, where ∆Γ is a context that binds a change
dx for each base input x bound in the context Γ.

Next we consider λxs ys→ sum (merge xs ys). Since xs, dxs, ys, dys are free in D n sum (merge xs ys) o
(ignoring later optimizations), term

D n λxs ys→ sum (merge xs ys) o
must bind all those variables.

D n λxs ys→ sum (merge xs ys) o
= λxs dxs ys dys→ D n sum (merge xs ys) o
=β λxs dxs ys dys→ sum (merge dxs dys)

Next we need to transform the binding of grandTotal2 to its body b = λxs ys→ sum (merge xs ys).
We copy this binding and add a new additional binding from dgrandTotal2 to the derivative of b.

grandTotal = λxs ys → sum (merge xs ys)
dgrandTotal = λxs dxs ys dys→ sum (merge dxs dys)

Finally, we need to transform the binding of output and its body. By iterating similar steps, in
the end we get:

grandTotal = λxs ys → sum (merge xs ys)
dgrandTotal = λxs dxs ys dys→ sum (merge dxs dys)
s = grandTotal { {1, 2, 3} } { {4} }
ds = dgrandTotal { {1, 2, 3} } { {1} } { {4} } { {5} }

=β sum (merge { {1} } { {5} })

Self-maintainability Di�erentiation does not always produce e�cient derivatives without fur-
ther program transformations; in particular, derivatives might need to recompute results produced
by the base program. In the above example, if we don’t inline derivatives and use β-reduction to
simplify programs, D n sum (merge xs ys) o is just dsum (merge xs ys) D nmerge xs ys o. A direct
execution of this program will compute merge xs ys, which would waste time linear in the base
inputs.

We’ll show how to avoid such recomputations in general in Sec. 17.2; but here we can avoid
computing merge xs ys simply because dsum does not use its base argument, that is, it is self-
maintainable. Without the approach described in Chapter 17, we are restricted to self-maintainable
derivatives.
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10.7 Conclusion and contributions
In this chapter, we have seen how a correct di�erentiation transform allows us to incrementalize
programs.

10.7.1 Navigating this thesis part
Di�erentiation This chapter and Chapters 11 to 14 form the core of incrementalization theory,
with other chapters building on top of them. We study incrementalization for STLC; we summarize
our formalization of STLC in Appendix A. Together with Chapter 10, Chapter 11 introduces the
overall approach to incrementalization informally. Chapters 12 and 13 show that incrementalization
using ILC is correct. Building on a set-theoretic semantics, these chapters also develop the theory
underlying this correctness proofs and further results. Equational reasoning on terms is then
developed in Chapter 14.

Chapters 12 to 14 contain full formal proofs: readers are welcome to skip or skim those proofs
where appropriate. For ease of reference and to help navigation and skimming, these highlight
and number all de�nitions, notations, theorem statements and so on, and we strive not to hide
important de�nitions inside theorems.

Later chapters build on this core but are again independent from each other.

Extensions and theoretical discussion Chapter 15 discusses a few assorted aspects of the
theory that do not �t elsewhere and do not su�ce for standalone chapters. We show how to
di�erentiation general recursion Sec. 15.1, we exhibit a function change that is not valid for any
function (Sec. 15.2), we contrast our representation of function changes with pointwise function
changes (Sec. 15.3), and we compare our formalization with the one presented in [Cai et al., 2014]
(Sec. 15.4).

Performance of di�erentiated programs Chapter 16 studies how to apply di�erentiation
(as introduced in previous chapters) to incrementalize a case study and empirically evaluates
performance speedups.

Di�erentiation with cache-transfer-style conversion Chapter 17 is self-contained, even
though it builds on the rest of the material; it summarizes the basics of ILC in Sec. 17.2.1. Terminology
in that chapter is sometimes subtly di�erent from the rest of the thesis.

Towards di�erentiation for System F Chapter 18 outlines how to extend di�erentiation to
System F and suggests a proof avenue. Di�erentiation for System F requires a generalization of
change structures to changes across di�erent types (Sec. 18.4) that appears of independent interest,
though further research remains to be done.

Related work, conclusions and appendixes Finally, Sec. 17.6 and Chapter 19 discuss related
work and Chapter 20 concludes this part of the thesis.

10.7.2 Contributions
In Chapters 11 to 14 and Chapter 16 we make the following contributions:

• We present a novel mathematical theory of changes and derivatives, which is more general
than other work in the �eld because changes are �rst-class entities, they are distinct from
base values and they are de�ned also for functions.
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• We present the �rst approach to incremental computation for pure λ-calculi by a source-to-
source transformation, D , that requires no run-time support. The transformation produces
an incremental program in the same language; all optimization techniques for the original
program are applicable to the incremental program as well.

• We prove that our incrementalizing transformation D is correct by a novel machine-checked
logical relation proof, mechanized in Agda.

• While we focus mainly on the theory of changes and derivatives, we also perform a per-
formance case study. We implement the derivation transformation in Scala, with a plug-in
architecture that can be extended with new base types and primitives. We de�ne a plugin
with support for di�erent collection types and use the plugin to incrementalize a variant of
the MapReduce programming model [Lämmel, 2007]. Benchmarks show that on this program,
incrementalization can reduce asymptotic complexity and can turn O(n) performance into
O(1), improving running time by over 4 orders of magnitude on realistic inputs (Chapter 16).

In Chapter 17 we make the following contributions:

• via examples, we motivate extending ILC to remember intermediate results (Sec. 17.2);

• we give a novel proof of correctness for ILC for untyped λ-calculus, based on step-indexed
logical relations (Sec. 17.3.3);

• building on top of ILC-style di�erentiation, we show how to transform untyped higher-order
programs to cache-transfer-style (CTS) (Sec. 17.3.5);

• we show through formal proofs that programs and derivatives in cache-transfer style simulate
correctly their non-CTS variants (Sec. 17.3.6);

• we perform performance case studies (in Sec. 17.4) applying (by hand) extension of this
technique to Haskell programs, and incrementalize e�ciently also programs that do not admit
self-maintainable derivatives.

Chapter 18 describes how to extend di�erentiation to System F. To this end, we extend change
structure to allow from changes where source and destination have di�erent types and enable
de�ning more powerful combinators for change structures to be more powerful. While the results
in this chapter call for further research, we consider them exciting

Appendix C proposes the �rst correctness proofs for ILC via operational methods and (step-
indexed) logical relations, for simply-typed λ-calculus (without and with general recursion) and
for untyped λ-calculus. A later variant of this proof, adapted for use of cache-transfer-style, is
presented in Chapter 17, but we believe the presentation in Appendix C might also be interesting for
theorists, as it explains how to extend ILC correctness proofs with fewer extraneous complications.
Nevertheless, given the similarity between proofs in Appendix C and Chapter 17, we relegate the
latter one to an appendix.

Finally, Appendix D shows how to implement all change operations on function changes
e�ciently, by defunctionalizing functions and function changes rather than using mere closure
conversion.
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Chapter 11

A tour of di�erentiation examples

Before formalizing ILC, we show more example of change structures and primitives, to show (a)
designs for reusable primitives and their derivatives, (b) to what extent we can incrementalize basic
building blocks such as recursive functions and algebraic data types, and (c) to sketch how we can
incrementalize collections e�ciently. We make no attempt at incrementalizing a complete collection
API here; we discuss brie�y more complete implementations in Chapter 16 and Sec. 17.4.

To describe these examples informally, we use Haskell notation and let polymorphism as
appropriate (see Appendix A.2).

We also motivate a few extensions to di�erentiation that we describe later. As we’ll see in
this chapter, we’ll need to enable some forms of introspection on function changes to manipulate
the embedded environments, as we discuss in Appendix D. We will also need ways to remember
intermediate results, which we will discuss in Chapter 17. We will also use overly simpli�ed change
structures to illustrate a few points.

11.1 Change structures as type-class instances

We encode change structures, as sketched earlier in Sec. 10.3, through a type class namedChangeStruct.
An instance ChangeStruct t de�nes a change type ∆t as an associated type and operations ⊕, 	
and } are de�ned as methods. We also de�ne method oreplace, such that oreplace v2 produces a
replacement change from any source to v2; by default, v2 	 v1 is simply an alias for oreplace v2.

class ChangeStruct t where
type ∆t
(⊕) :: t → ∆t → t
oreplace :: t → ∆t
(	) :: t → t → ∆t
v2 	 v1 = oreplace v2
(}) :: ∆t → ∆t → ∆t
0 :: t → ∆t

In this chapter we will often show change structures where only some methods are de�ned; in
actual implementations we use a type class hierarchy to encode what operations are available, but
we collapse this hierarchy here to simplify presentation.

69
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11.2 How to design a language plugin
When adding support for a datatype T , we will strive to de�ne both a change structure and derivatives
of introduction and elimination forms for T , since such forms constitute a complete API for using
that datatype. However, we will sometimes have to restrict elimination forms to scenarios that can
be incrementalized e�ciently.

In general, to di�erentiate a primitive f : A→ B once we have de�ned a change structure for A,
we can start by de�ning

df a1 da = f (a1 ⊕ da) 	 f a1, (11.1)

where da is a valid change from a1 to a2. We then try to simplify and rewrite the expression using
equational reasoning, so that it does not refer to 	 any more, as far as possible. We can assume that
all argument changes are valid, especially if that allows producing faster derivatives; we formalize
equational reasoning for valid changes in Sec. 14.1.1. In fact, instead of de�ning 	 and simplifying
f a2 	 f a1 to not use it, it is su�cient to produce a change from f a1 to f a2, even a di�erent one.
We write da1 =∆ da2 to mean that changes da1 and da2 are equivalent, that is they have the same
source and destination. We de�ne this concept properly in Sec. 14.2.

We try to avoid running 	 on arguments of non-constant size, since it might easily take time
linear or superlinear in the argument sizes; if 	 produces replacement values, it completes in
constant time but derivatives invoked on the produced changes are not e�cient.

11.3 Incrementalizing a collection API
In this section, we describe a collection API that we incrementalize (partially) in this chapter.

To avoid notation con�icts, we represent lists via datatype List a, de�ned as follows:

data List a = Nil | Cons a (List a)

We also consider as primitive operation a standard mapping function map. We also support two
restricted forms of aggregation: (a) folding over an abelian group via fold, similar to how one usually
folds over a monoid;1 (b) list concatenation via concat. We will not discuss how to di�erentiate
concat, as we reuse existing solutions by Firsov and Jeltsch [2016].

singleton :: a→ List a
singleton x = Cons x Nil
map :: (a→ b) → List a→ List b
map f Nil = Nil
map f (Cons x xs) = Cons (f x) (map f xs)
fold :: AbelianGroupChangeStruct b⇒ List b→ b
fold Nil = mempty
fold (Cons x xs) = x � fold xs -- Where � is in�x for mappend.
concat :: List (List a) → List a
concat = . . .

While usually fold requires only an instance Monoid b of type class Monoid to aggregate collection
elements, our variant of fold requires an instance of type class GroupChangeStruct, a subclass of
Monoid. This type class is not used by fold itself, but only by its derivative, as we explain in
Sec. 11.3.2; nevertheless, we add this stronger constraint to fold itself because we forbid derivatives

1h�ps://hackage.haskell.org/package/base-4.9.1.0/docs/Data-Foldable.html.

https://hackage.haskell.org/package/base-4.9.1.0/docs/Data-Foldable.html
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with stronger type-class constraints. With this approach, all clients of fold can be incrementalized
using di�erentiation.

Using those primitives, one can de�ne further higher-order functions on collections such as
concatMap, �lter , foldMap. In turn, these functions form the kernel of a collection API, as studied
for instance by work on the monoid comprehension calculus [Grust and Scholl, 1996a; Fegaras and
Maier, 1995; Fegaras, 1999], even if they are not complete by themselves.

concatMap :: (a→ List b) → List a→ List b
concatMap f = concat ◦map f
�lter :: (a→ Bool) → List a→ List a
�lter p = concatMap (λx → if p x then singleton x else Nil)
foldMap :: AbelianGroupChangeStruct b⇒ (a→ b) → List a→ b
foldMap f = fold ◦map f

In �rst-order DSLs such as SQL, such functionality must typically be added through separate
primitives (consider for instance �lter), while here we can simply de�ne, for instance, �lter on top
of concatMap, and incrementalize the resulting de�nitions using di�erentiation.

Function �lter uses conditionals, which we haven’t discussed yet; we show how to incrementalize
�lter successfully in Sec. 11.6.

11.3.1 Changes to type-class instances?
In this whole chapter, we assume that type-class instances, such as fold’s AbelianGroupChangeStruct
argument, do not undergo changes. Since type-class instances are closed top-level de�nitions of
operations and are canonical for a datatype, it is hard to imagine a change to a type-class instance.
On the other hand, type-class instances can be encoded as �rst-class values. We can for instance
imagine a fold taking a unit value and an associative operation as argument. In such scenarios, one
needs additional e�ort to propagate changes to operation arguments, similarly to changes to the
function argument to map.

11.3.2 Incrementalizing aggregation
Let’s now discuss how to incrementalize fold. We consider an oversimpli�ed change structure that
allows only two sorts of changes: prepending an element to a list or removing the list head of a
non-empty list, and study how to incrementalize fold for such changes:

data ListChange a = Prepend a | Remove
instance ChangeStruct (List a) where
type ∆(List a) = ListChange a
xs ⊕ Prepend x = Cons x xs
(Cons x xs) ⊕ Remove = xs
Nil ⊕ Remove = error "Invalid change"

dfold xs (Prepend x) = . . .

Removing an element from an empty list is an invalid change, hence it is safe to give an error in
that scenario as mentioned when introducing ⊕ (Sec. 10.3).

By using equational reasoning as suggested in Sec. 11.2, starting from Eq. (11.1), one can show
formally that dfold xs (Prepend x) should be a change that, in a sense, “adds” x to the result using
group operations:
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dfold xs (Prepend x)
=∆ fold (xs ⊕ Prepend x) 	 fold xs
= fold (Cons x xs) 	 fold xs
= (x � fold xs) 	 fold xs

Similarly, dfold (Cons x xs) Remove should instead “subtract” x from the result:

dfold (Cons x xs) Remove
=∆ fold (Cons x xs ⊕ Remove) 	 fold (Cons x xs)
= fold xs 	 fold (Cons x xs)
= fold xs 	 (x � fold xs)

As discussed, using 	 is fast enough on, say, integers or other primitive types, but not in general.
To avoid using 	 we must rewrite its invocation to an equivalent expression. In this scenario we
can use group changes for abelian groups, and restrict fold to situations where such changes are
available.

dfold :: AbelianGroupChangeStruct b⇒ List b→ ∆(List b) → ∆b
dfold xs (Prepend x) = inject x
dfold (Cons x xs) Remove = inject (invert x)
dfold Nil Remove = error "Invalid change"

To support group changes we de�ne the following type classes to model abelian groups and
group change structures, omitting APIs for more general groups. AbelianGroupChangeStruct only
requires that group elements of type g can be converted into changes (type ∆g), allowing change
type ∆g to contain other sorts of changes.

class Monoid g ⇒ AbelianGroup g where
invert :: g → g

class (AbelianGroup a,ChangeStruct a) ⇒
AbelianGroupChangeStruct a where

-- Inject group elements into changes. Law:
-- a ⊕ inject b = a � b
inject :: a→ ∆a

Chapter 16 discusses how we can use group changes without assuming a single group is de�ned
on elements, but here we simply select the canonical group as chosen by type-class resolution. To
use a di�erent group, as usual, one de�nes a di�erent but isomorphic type via the Haskell newtype
construct. As a downside, derivatives newtype constructors must convert changes across di�erent
representations.

Rewriting 	 away can also be possible for other specialized folds, though sometimes they can
be incrementalized directly; for instance map can be written as a fold. Incrementalizing map for the
insertion of x into xs requires simplifying map f (Cons x xs) 	map f xs. To avoid 	 we can rewrite
this change statically to Insert (f x); indeed, we can incrementalize map also for more realistic
change structures.

Associative tree folds Other usages of fold over sequences produce result type of small bounded
size (such as integers). In this scenario, one can incrementalize the given fold e�ciently using 	
instead of relying on group operations. For such scenarios, one can design a primitive

foldMonoid :: Monoid a⇒ List a⇒ a
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for associative tree folds, that is, a function that folds over the input sequence using a monoid (that
is, an associative operation with a unit). For e�cient incrementalization, foldMonoid’s intermediate
results should form a balanced tree and updating this tree should take logarithmic time: one
approach to ensure this is to represent the input sequence itself using a balanced tree, such as a
�nger tree [Hinze and Paterson, 2006].

Various algorithms store intermediate results of folding inside an input balanced tree, as described
by Cormen et al. [2001, Ch. 14] or by Hinze and Paterson [2006]. But intermediate results can also
be stored outside the input tree, as is commonly done using self-adjusting computation [Acar, 2005,
Sec. 9.1], or as can be done in our setting. While we do not use such folds, we describe the existing
algorithms brie�y and sketch how to integrate them in our setting.

Function foldMonoid must record the intermediate results, and the derivative dfoldMonoid must
propagate input changes to a�ected intermediate results.

2 To study time complexity of input change propagation, it is useful to consider the dependency
graph of intermediate results: in this graph, an intermediate result v1 has an arc to intermediate result
v2 if and only if computing v1 depends on v2. To ensure dfoldMonoid is e�cient, the dependency
graph of intermediate results from foldMonoid must form a balanced tree of logarithmic height, so
that changes to a leaf only a�ect a logarithmic number of intermediate results.

In contrast, implementing foldMonoid using foldr on a list produces an unbalanced graph of
intermediate results. For instance, take input list xs = [1 . . 8], containing numbers from 1 to 8, and
assume a given monoid. Summing them with foldr (�) mempty xs means evaluating

1 � (2 � (3 � (4 � (5 � (6 � (7 � (8 �mempty))))))).

Then, a change to the last element of input xs a�ects all intermediate results, hence incrementaliza-
tion takes at least O(n). In contrast, using foldAssoc on xs should evaluate a balanced tree similar
to

((1 � 2) � (3 � 4)) � ((5 � 6) � (7 � 8)),

so that any individual change to a leave, insertion or deletion only a�ects O(logn) intermediate
results (where n is the sequence size). Upon modi�cations to the tree, one must ensure that the
balancing is stable [Acar, 2005, Sec. 9.1]. In other words, altering the tree (by inserting or removing
an element) must only alter O(logn) nodes.

We have implemented associative tree folds on very simple but unbalanced tree structures; we
believe they could be implemented and incrementalized over balanced trees representing sequences,
such as �nger trees or random access zippers [Headley and Hammer, 2016], but doing so requires
transforming their implementation of their data structure to cache-transfer style (CTS) (Chapter 17).
We leave this for future work, together with an automated implementation of CTS transformation.

11.3.3 Modifying list elements
In this section, we consider another change structure on lists that allows expressing changes to
individual elements. Then, we present dmap, derivative of map for this change structure. Finally,
we sketch informally the correctness of dmap, which we prove formally in Example 14.1.1.

We can then represent changes to a list (List a) as a list of changes (List (∆a)), one for each
element. A list change dxs is valid for source xs if they have the same length and each element
change is valid for its corresponding element. For this change structure we can de�ne ⊕ and },
but not a total 	: such list changes can’t express the di�erence between two lists of di�erent
lengths. Nevertheless, this change structure is su�cient to de�ne derivatives that act correctly

2We discuss in Chapter 17 how base functions communicate results to derivatives.
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on the changes that can be expressed. We can describe this change structure in Haskell using a
type-class instance for class ChangeStruct:

instance ChangeStruct (List a) where
type ∆(List a) = List (∆a)
Nil ⊕ Nil = Nil
(Cons x xs) ⊕ (Cons dx dxs) = Cons (x ⊕ xs) (dx ⊕ dxs)
_ ⊕ _ = Nil

The following dmap function is a derivative for the standardmap function (included for reference)
and the given change structure. We discuss derivatives for recursive functions in Sec. 15.1.

map : (a→ b) → List a→ List b
map f Nil = Nil
map f (Cons x xs) = Cons (f x) (map f xs)
dmap : (a→ b) → ∆(a→ b) → List a→ ∆List a→ ∆List b

-- A valid list change has the same length as the base list:
dmap f df Nil Nil = Nil
dmap f df (Cons x xs) (Cons dx dxs) =

Cons (df x dx) (dmap f df xs dxs)
-- Remaining cases deal with invalid changes, and a dummy
-- result is su�cient.

dmap f df xs dxs = Nil

Function dmap is a correct derivative of map for this change structure, according to Slogan 10.3.3: we
sketch an informal argument by induction. The equation for dmap f df Nil Nil returns Nil, a valid
change from initial to updated outputs, as required. In the equation for dmap f df (Cons x xs) (Cons dx dxs)
we compute changes to the head and tail of the result, to produce a change from map f (Cons x xs)
to map (f ⊕ df ) (Cons x xs ⊕ Cons dx dxs). To this end, (a) we use df x dx to compute a change
to the head of the result, from f x to (f ⊕ df ) (x ⊕ dx); (b) we use dmap f df xs dxs recursively
to compute a change to the tail of the result, from map f xs to map (f ⊕ df ) (xs ⊕ dxs); (c) we
assemble changes to head and tail with Cons into a change from In other words, dmap turns input
changes to output changes correctly according to our Slogan 10.3.3: it is a correct derivative for
map according to this change structure. We have reasoned informally; we formalize this style of
reasoning in Sec. 14.1. Crucially, our conclusions only hold if input changes are valid, hence term
map f xs ⊕ dmap f df xs dxs is not denotationally equal to map (f ⊕ df ) (xs ⊕ dxs) for arbitrary
change environments: these two terms only evaluate to the same result for valid input changes.

Since this de�nition of dmap is a correct derivative, we could use it in an incremental DSL for
list manipulation, together with other primitives. Because of limitations we describe next, we will
use instead improved language plugins for sequences.

11.3.4 Limitations
We have shown simpli�ed list changes, but they have a few limitations. Fixing those requires more
sophisticated de�nitions.

As discussed, our list changes intentionally forbid changing the length of a list. And our
de�nition of dmap has further limitations: a change to a list of n elements takes size O(n), even
when most elements do not change, and calling dmap f df on it requires n calls to df . This is only
faster if df is faster than f , but adds no further speedup.

We can describe instead a change to an arbitrary list element x in xs by giving the change dx
and the position of x in xs. A list change is then a sequence of such changes:
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type ∆(List a) = List (AtomicChange a)
data AtomicChange a = Modify Z (∆a)

However, fetching the i-th list element still takes time linear in i: we need a better representation
of sequences. In next section, we switch to a change structure on sequences de�ned by �nger
trees [Hinze and Paterson, 2006], following Firsov and Jeltsch [2016].

11.4 E�cient sequence changes
Firsov and Jeltsch [2016] de�ne an e�cient representation of list changes in a framework similar
to ILC, and incrementalize selected operations over this change structure. They also provide
combinators to assemble further operations on top of the provided ones. We extend their framework
to handle function changes and generate derivatives for all functions that can be expressed in terms
of the primitives.

Conceptually, a change for type Sequence a is a sequence of atomic changes. Each atomic change
inserts one element at a given position, or removes one element, or changes an element at one
position.3

data SeqSingleChange a
= Insert { idx :: Z, x :: a}
| Remove { idx :: Z}
| ChangeAt { idx :: Z, dx :: ∆a}

data SeqChange a = Sequence (SeqSingleChange a)
type ∆(Sequence a) = SeqChange a

We use Firsov and Jeltsch’s variant of this change structure in Sec. 17.4.

11.5 Products
It is also possible to de�ne change structures for arbitrary sum and product types, and to provide
derivatives for introduction and elimination forms for such datatypes. In this section we discuss
products, in the next section sums.

We de�ne a simple change structure for product type A × B from change structures for A and B,
similar to change structures for environments: operations act pointwise on the two components.

instance (ChangeStruct a,ChangeStruct b) ⇒ ChangeStruct (a, b) where
type ∆(a, b) = (∆a,∆b)
(a, b) ⊕ (da, db) = (a ⊕ da, b ⊕ db)
(a2, b2) 	 (a1, b1) = (a2 	 a1, b2 	 b1)
oreplace (a2, b2) = (oreplace a2, oreplace b2)
0a,b = (0a, 0b)
(da1, db1) } (da2, db2) = (da1 } da2, db1 } db2)

Through equational reasoning as in Sec. 11.2, we can also compute derivatives for basic primitives
on product types, both the introduction form (that we alias as pair) and the elimination forms fst
and snd. We just present the resulting de�nitions:

pair a b = (a, b)
dpair a da b db = (da, db)

3Firsov and Jeltsch [2016] and our actual implementation allow changes to multiple elements.
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fst (a, b) = a
snd (a, b) = b
dfst :: ∆(a, b) → ∆a
dfst (da, db) = da
dsnd :: ∆(a, b) → ∆b
dsnd (da, db) = db
uncurry :: (a→ b→ c) → (a, b) → c
uncurry f (a, b) = f a b
duncurry :: (a→ b→ c) → ∆(a→ b→ c) → (a, b) → ∆(a, b) → ∆c
duncurry f df (x, y) (dx, dy) = df x dx y dy

One can also de�ne n-ary products in a similar way. However, a product change contains as
many entries as a product.

11.6 Sums, pattern matching and conditionals
In this section we de�ne change structures for sum types, together with the derivative of their
introduction and elimination forms. We also obtain support for booleans (which can be encoded as
sum type 1 + 1) and conditionals (which can be encoded in terms of elimination for sums). We have
mechanically proved correctness of this change structure and derivatives, but we do not present the
tedious details in this thesis and refer to our Agda formalization.

Changes structures for sums are more challenging than ones for products. We can de�ne them,
but in many cases we can do better with specialized structures. Nevertheless, such changes are
useful in some scenarios.

In Haskell, sum types a+ b are conventionally de�ned via datatype Either a b, with introduction
forms Le� and Right and elimination form either which will be our primitives:

data Either a b = Le� a | Right b
either :: (a→ c) → (b→ c) → Either a b→ c
either f g (Le� a) = f a
either f g (Right b) = g b

We can de�ne the following change structure.

data EitherChange a b
= Le�C (∆a)
| RightC (∆b)
| EitherReplace (Either a b)

instance (ChangeStruct a,ChangeStruct b) ⇒
ChangeStruct (Either a b) where

type ∆(Either a b) = EitherChange a b
Le� a ⊕ Le�C da = Le� (a ⊕ da)
Right b ⊕ RightC db = Right (b ⊕ db)
Le� _ ⊕ RightC _ = error "Invalid change!"
Right _ ⊕ Le�C _ = error "Invalid change!"
_ ⊕ EitherReplace e2 = e2
oreplace = EitherReplace
0Le� a = Le�C 0a
0Right a = RightC 0a
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Changes to a sum value can either keep the same “branch” (left or right) and modify the contained
value, or replace the sum value with another one altogether. Speci�cally, change Le�C da is valid
from Le� a1 to Le� a2 if da is valid from a1 to a2. Similarly, change RightC db is valid from Right b1
to Right b2 if db is valid from b1 to b2. Finally, replacement change EitherReplace e2 is valid from e1
to e2 for any e1.

Using Eq. (11.1), we can then obtain de�nitions for derivatives of primitives Le�, Right and
either . The resulting code is as follows:

dLe� :: a→ ∆a→ ∆(Either a b)
dLe� a da = Le�C da
dRight :: b→ ∆b→ ∆(Either a b)
dRight b db = RightC db
deither ::
(NilChangeStruct a,NilChangeStruct b,Di�ChangeStruct c) ⇒
(a→ c) → ∆(a→ c) → (b→ c) → ∆(b→ c) →
Either a b→ ∆(Either a b) → ∆c

deither f df g dg (Le� a) (Le�C da) = df a da
deither f df g dg (Right b) (RightC db) = dg b db
deither f df g dg e1 (EitherReplace e2) =
either (f ⊕ df ) (g ⊕ dg) e2 	 either f g e1

deither _ _ _ _ _ _ = error "Invalid sum change"

We show only one case of the derivation of deither as an example:

deither f df g dg (Le� a) (Le�C da)
=∆ { using variants of Eq. (11.1) for multiple arguments }
either (f ⊕ df ) (g ⊕ dg) (Le� a ⊕ Le�C da) 	 either f g (Le� a)
= { simplify ⊕ }
either (f ⊕ df ) (g ⊕ dg) (Le� (a ⊕ da)) 	 either f g (Le� a)
= { simplify either }
(f ⊕ df ) (a ⊕ da) 	 f a
=∆ { because df is a valid change for f , and da for a }
df a da

Unfortunately, with this change structure a change from Le� a1 to Right b2 is simply a replace-
ment change, so derivatives processing it must recompute results from scratch. In general, we
cannot do better, since there need be no shared data between two branches of a datatype. We need
to �nd specialized scenarios where better implementations are possible.

Extensions, changes for ADTs and future work In some cases, we consider changes for type
Either a b, where a and b both contain some other type c. Take again lists: a change from list as
to list Cons a2 as should simply say that we prepend a2 to the list. In a sense, we are just using a
change structure from type List a to (a, List a). More in general, if change das from as1 to as2 is
small, a change from list as1 to list Cons a2 as2 should simply “say” that we prepend a2 and that we
modify as1 into as2, and similarly for removals.

In Sec. 18.4, we suggest how to construct such change structures, based on the concept of
polymorphic change structure, where changes have source and destination of di�erent types. Based
on initial experiments, we believe one could develop these constructions into a powerful combinator
language for change structures. In particular, it should be possible to build change structures for lists
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similar to the ones in Sec. 11.3.2. Generalizing beyond lists, similar systematic constructions should
be able to represent insertions and removals of one-hole contexts [McBride, 2001] for arbitrary
algebraic datatypes (ADTs); for ADTs representing balanced data structures, such changes could
enable e�cient incrementalization in many scenarios. However, many questions remain open, so
we leave this e�ort for future work.

11.6.1 Optimizing �lter

In Sec. 11.3 we have de�ned �lter using a conditional, and now we have just explained that in
general conditionals are ine�cient! This seems pretty unfortunate. But luckily, we can optimize
�lter using equational reasoning.

Consider again the earlier de�nition of �lter :

�lter :: (a→ Bool) → List a→ List a
�lter p = concatMap (λx → if p x then singleton x else Nil)

As explained, we can encode conditionals using either and di�erentiate the resulting program.
However, if p x changes from True to False, or viceversa (that is, for all elements x for which dp x dx
is a non-nil change), we must compute 	 at runtime. However, 	 will compare empty list Nil with
a singleton list produced by singleton x (in one direction or the other). We can have 	 detect this
situation at runtime. But since the implementation of �lter is known statically, we can optimize
this code at runtime, rewriting singleton x 	 Nil to Insert x, and Nil 	 singleton x to Remove. To
enable this optimization in d�lter , we need to inline the function that �lter passes as argument to
concatMap and all the functions it calls except p. Moreover, we need to case-split on possible return
values for p x and dp x dx. We omit the steps because they are both tedious and standard.

It appears in principle possible to automate such transformations by adding domain-speci�c
knowledge to a su�ciently smart compiler, though we have made no attempt at an actual implemen-
tation. It would be �rst necessary to investigate further classes of examples where optimizations are
applicable. Su�ciently smart compilers are rare, but since our approach produces purely functional
programs we have access to GHC and HERMIT [Farmer et al., 2012]. An interesting alternative
(which does have some support for side e�ects) is LMS [Rompf and Odersky, 2010] and Delite [Brown
et al., 2011]. We leave further investigation for future work.

11.7 Chapter conclusion
In this chapter we have toured what can and cannot be incrementalized using di�erentiation, and
how using higher-order functions allows de�ning generic primitives to incrementalize.
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Changes and di�erentiation,
formally

To support incrementalization, in this chapter we introduce di�erentiation and formally prove
it correct. That is, we prove that nD n t o o produces derivatives. As we explain in Sec. 12.1.2,
derivatives transform valid input changes into valid output changes (Slogan 10.3.3). Hence, we
de�ne what are valid changes (Sec. 12.1). As we’ll explain in Sec. 12.1.4, validity is a logical relation.
As we explain in Sec. 12.2.2, our correctness theorem is the fundamental property for the validity
logical relation, proved by induction over the structure of terms. Crucial de�nitions or derived facts
are summarized in Fig. 12.1. Later, in Chapter 13 we study consequences of correctness and change
operations.

All de�nitions and proofs in this and next chapter is mechanized in Agda, except where otherwise
indicated. To this writer, given these de�nitions all proofs have become straightforward and
unsurprising. Nevertheless, �rst obtaining these proofs took a while. So we typically include full
proofs. We also believe these proofs clarify the meaning and consequences of our de�nitions. To
make proofs as accessible as possible, we try to provide enough detail that our target readers can
follow along without pencil and paper, at the expense of making our proofs look longer than they
would usually be. As we target readers pro�cient with STLC (but not necessarily pro�cient with
logical relations), we’ll still omit routine steps needed to reason on STLC, such as typing derivations
or binding issues.

12.1 Changes and validity

In this section we introduce formally (a) a description of changes; (b) a de�nition of which changes
are valid. We have already introduced informally in Chapter 10 these notions and how they �t
together. We next de�ne the same notions formally, and deduce their key properties. Language
plugins extend these de�nitions for base types and constants that they provide.

To formalize the notion of changes for elements of a set V , we de�ne the notion of basic change
structure on V .

De�nition 12.1.1 (Basic change structures)
A basic change structure on set V , written Ṽ , comprises:

(a) a change set ∆V

79
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∆τ

∆ι = . . .

∆(σ → τ ) = σ → ∆σ → ∆τ

(a) Change types (De�nition 12.1.17).

∆Γ

∆ε = ε

∆ (Γ,x : τ ) = ∆Γ,x : τ , dx : ∆τ

(b) Change contexts (De�nition 12.1.23).

D n t o

D n λ(x : σ ) → t o = λ(x : σ ) (dx : ∆σ ) → D n t o
D n s t o = D n s o t D n t o

D n x o = dx

D n c o = DC n c o

(c) Di�erentiation (De�nition 10.5.1).

Γ ` t : τ
∆Γ ` D n t o : ∆τ

Derive

(d) Di�erentiation typing (Lemma 12.2.8).

dv B v1 ↪→ v2 : τ with v1, v2 : nτ o , dv : n∆τ o

dv B v1 ↪→ v2 : ι = . . .
df B f1 ↪→ f2 : σ → τ = ∀da B a1 ↪→ a2 : σ . df a1 da B f1 a1 ↪→ f2 a2 : τ

dρ B ρ1 ↪→ ρ2 : Γ with ρ1, ρ2 : n Γ o , dρ : n∆Γ o

� B � ↪→ � : ε
dρ B ρ1 ↪→ ρ2 : Γ da B a1 ↪→ a2 : τ

(dρ,x = a1,dx = da) B (ρ1,x = a1) ↪→ (ρ2,x = a2) : Γ,x : τ

(e) Validity (De�nitions 12.1.21 and 12.1.24).

If Γ ` t : τ then

∀dρ B ρ1 ↪→ ρ2 : Γ. nD n t o o dρ B n t o ρ1 ↪→ n t o ρ2 : τ .

(f) Correctness of D n – o (from Theorem 12.2.2).

Figure 12.1: De�ning di�erentiation and proving it correct. The rest of this chapter explains and
motivates the above de�nitions.
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(b) a ternary validity relation dv B v1 ↪→ v2 : V , for v1, v2 ∈ V and dv ∈ ∆V , that we read as “dv
is a valid change from source v1 to destination v2 (on set V )”. �

Example 12.1.2
In Examples 10.3.1 and 10.3.2 we exempli�ed informally change types and validity on naturals,
integers and bags. We de�ne formally basic change structures on naturals and integers. Compared
to validity for integers, validity for naturals ensures that the destination v1 + dv is again a natural.
For instance, given source v1 = 1, change dv = −2 is valid (with destination v2 = −1) only on
integers, not on naturals. �

De�nition 12.1.3 (Basic change structure on integers)
Basic change structure Z̃ on integers has integers as changes (∆Z = Z) and the following validity
judgment.

dv B v1 ↪→ v1 + dv : Z

�

De�nition 12.1.4 (Basic change structure on naturals)
Basic change structure Ñ on naturals has integers as changes (∆N = Z) and the following validity
judgment.

v1 + dv > 0
dv B v1 ↪→ v1 + dv : N

�

Intuitively, we can think of a valid change from v1 to v2 as a graph edge from v1 to v2, so we’ll
often use graph terminology when discussing changes. This intuition is robust and can be made
fully precise.1 More speci�cally, a basic change structure on V can be seen as a directed multigraph,
having as vertexes the elements of V , and as edges from v1 to v2 the valid changes dv from v1 to v2.
This is a multigraph because our de�nition allows multiple edges between v1 and v2.

A change dv can be valid from v1 to v2 and from v3 to v4, but we’ll still want to talk about the
source and the destination of a change. When we talk about a change dv valid from v1 to v2, value
v1 is dv’s source and v2 is dv’s destination. Hence we’ll systematically quantify theorems over valid
changes dv with their sources v1 and destination v2, using the following notation.2

Notation 12.1.5 (Quanti�cation over valid changes)
We write

∀dv B v1 ↪→ v2 : V . P,

and say “for all (valid) changes dv from v1 to v2 on set V we have P”, as a shortcut for

∀v1, v2 ∈ V , dv ∈ ∆V , if dv B v1 ↪→ v2 : V then P .

Since we focus on valid changes, we’ll omit the word “valid” when clear from context. In
particular, a change from v1 to v2 is necessarily valid. �

1See for instance Robert Atkey’s blog post [Atkey, 2015] or Yufei Cai’s PhD thesis [Cai, 2017].
2If you prefer, you can tag a change with its source and destination by using a triple, and regard the whole triple

(v1, dv, v2) as a change. Mathematically, this gives the correct results, but we’ll typically not use such triples as changes in
programs for performance reasons.



82 Chapter 12. Changes and di�erentiation, formally

We can have multiple basic change structures on the same set.

Example 12.1.6 (Replacement changes)
For instance, for any set V we can talk about replacement changes on V : a replacement change
dv = !v2 for a value v1 : V simply speci�es directly a new value v2 : V , so that !v2 B v1 ↪→ v2 : V .
We read ! as the “bang” operator.

A basic change structure can decide to use only replacement changes (which can be appropriate
for primitive types with values of constant size), or to make∆V a sum type allowing both replacement
changes and other ways to describe a change (as long as we’re using a language plugin that adds
sum types). �

Nil changes Just like integers have a null element 0, among changes there can be nil changes:

De�nition 12.1.7 (Nil changes)
We say that dv : ∆V is a nil change for v : V if dv B v ↪→ v : V . �

For instance, 0 is a nil change for any integer number n. However, in general a change might be
nil for an element but not for another. For instance, the replacement change !6 is a nil change on 6
but not on 5.

We’ll say more on nil changes in Sec. 12.1.2 and 13.2.1.

12.1.1 Function spaces

Next, we de�ne a basic change structure that we call Ã→ B̃ for an arbitrary function space A→ B,
assuming we have basic change structures for both A and B. We claimed earlier that valid function
changes map valid input changes to valid output changes. We make this claim formal through next
de�nition.
De�nition 12.1.8 (Basic change structure on A→ B)
Given basic change structures on A and B, we de�ne a basic change structure on A→ B that we
write Ã→ B̃ as follows:

(a) Change set ∆(A→ B) is A→ ∆A→ ∆B.

(b) Function change df is valid from f1 to f2 (that is, df B f1 ↪→ f2 : A→ B) if and only if, for all
valid input changes da B a1 ↪→ a2 : A, value df a1 da is a valid output change from f1 a1 to
f2 a2 (that is, df a1 da B f1 a1 ↪→ f2 a2 : B). �

Notation 12.1.9 (Applying function changes to changes)
When reading out df a1 da we’ll often talk for brevity about applying df to da, leaving da’s source
a1 implicit when it can be deduced from context. �

We’ll also consider valid changes df for curried n-ary functions. We show what their validity
means for curried binary functions f : A→ B→ C. We omit similar statements for higher arities,
as they add no new ideas.

Lemma 12.1.10 (Validity on A→ B→ C)
For any basic change structures Ã, B̃ and C̃, function change df : ∆(A → B → C) is valid from
f1 to f2 (that is, df B f1 ↪→ f2 : A → B → C) if and only if applying df to valid input changes
da B a1 ↪→ a2 : A and db B b1 ↪→ b2 : B gives a valid output change

df a1 da b1 db B f a1 b1 ↪→ f a2 b2 : C. �
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Proof. The equivalence follows from applying the de�nition of function validity of df twice.
That is: function change df is valid (df B f1 ↪→ f2 : A→ (B→ C)) if and only if it maps valid

input change da B a1 ↪→ a2 : A to valid output change

df a1 da B f1 a1 ↪→ f2 a2 : B→ C.

In turn, df a1 da is a function change, which is valid if and only if it maps valid input change
db B b1 ↪→ b2 : B to

df a1 da b1 db B f a1 b1 ↪→ f a2 b2 : C

as required by the lemma. �

12.1.2 Derivatives
Among valid function changes, derivatives play a central role, especially in the statement of
correctness of di�erentiation.
De�nition 12.1.11 (Derivatives)
Given function f : A→ B, function df : A→ ∆A→ ∆B is a derivative for f if, for all changes da
from a1 to a2 on set A, change df a1 da is valid from f a1 to f a2. �

However, it follows that derivatives are nil function changes:

Lemma 12.1.12 (Derivatives as nil function changes)
Given function f : A → B, function df : ∆(A → B) is a derivative of f if and only if df is a nil
change of f (df B f ↪→ f : A→ B). �

Proof. First we show that nil changes are derivatives. First, a nil change df B f ↪→ f : A→ B has
the right type to be a derivative, because A → ∆A → ∆B = ∆(A → B). Since df is a nil change
from f to f , by de�nition it maps valid input changes da B a1 ↪→ a2 : A to valid output changes
df a1 da B f a1 ↪→ f a2 : B. Hence df is a derivative as required.

In fact, all proof steps are equivalences, and by tracing them backward, we can show that
derivatives are nil changes: Since a derivative df maps valid input changes da B a1 ↪→ a2 : A to
valid output changes df a1 da B f a1 ↪→ f a2 : B, df is a change from f to f as required. �

Applying derivatives to nil changes gives again nil changes. This fact is useful when reasoning
on derivatives. The proof is a useful exercise on using validity.

Lemma 12.1.13 (Derivatives preserve nil changes)
For any basic change structures Ã and B̃, function change df : ∆(A→ B) is a derivative of f : A→ B
(df B f ↪→ f : A→ B) if and only if applying df to an arbitrary input nil change da B a ↪→ a : A
gives a nil change

df a da B f a ↪→ f a : B. �

Proof. Just rewrite the de�nition of derivatives (Lemma 12.1.12) using the de�nition of validity of
df .

In detail, by de�nition of validity for function changes (De�nition 12.1.8), df B f1 ↪→ f2 : A→ B
means that from da B a1 ↪→ a2 : A follows df a1 da B f1 a1 ↪→ f2 a2 : B. Just substitute f1 = f2 = f
and a1 = a2 = a to get the required equivalence. �

Also derivatives of curried n-ary functions f preserve nil changes. We only state this formally
for curried binary functions f : A→ B→ C; higher arities require no new ideas.
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Lemma 12.1.14 (Derivatives preserve nil changes on A→ B→ C)
For any basic change structures Ã, B̃ and C̃, Change df : ∆(A → B → C) is a derivative of
f : A→ B→ C if and only if applying df to nil changes da B a ↪→ a : A and db B b ↪→ b : B gives
a nil change

df a da b db B f a b ↪→ f a b : C. �

Proof. Similarly to validity on A→ B→ C (Lemma 12.1.10), the thesis follows by applying twice
the fact that derivatives preserve nil changes (Lemma 12.1.13).

In detail, since derivatives preserve nil changes, df is a derivative if and only if for all da B
a ↪→ a : A we have df a da B f a ↪→ f a : B → C. But then, df a da is a nil change, that is a
derivative, and since it preserves nil changes, df is a derivative if and only if for all da B a ↪→ a : A
and db B b ↪→ b : B we have df a da b db B f a b ↪→ f a b : C. �

12.1.3 Basic change structures on types
After studying basic change structures in the abstract, we apply them to the study of our object
language.

For each type τ , we can de�ne a basic change structure on domain nτ o, which we write τ̃ .
Language plugins must provide basic change structures for base types. To provide basic change
structures for function types σ → τ , we use the earlier construction for basic change structures
σ̃ → τ̃ on function spaces nσ → τ o (De�nition 12.1.8).
De�nition 12.1.15 (Basic change structures on types)
For each type τ we associate a basic change structure on domain nτ o, written τ̃ through the
following equations:

ι̃ = . . .�σ → τ = σ̃ → τ̃

Plugin Requirement 12.1.16 (Basic change structures on base types)
For each base type ι, the plugin de�nes a basic change structure on n ι o that we write ι̃. �

Crucially, for each type τ we can de�ne a type ∆τ of changes, that we call change type, such
that the change set ∆ nτ o is just the domain n∆τ o associated to change type ∆τ : ∆ nτ o = n∆τ o.
This equation allows writing change terms that evaluate directly to change values.3

De�nition 12.1.17 (Change types)
The change type ∆τ of a type τ is de�ned as follows:

∆ι = . . .

∆(σ → τ ) = σ → ∆σ → ∆τ �

Lemma 12.1.18 (∆ and n –o commute on types)
For each type τ , change set ∆ nτ o equals the domain of change type n∆τ o. �

Proof. By induction on types. For the case of function types, we simply prove equationally that
∆ nσ → τ o = ∆(nσ o → nτ o) = nσ o → ∆ nσ o → ∆ nτ o = nσ o → n∆σ o → n∆τ o =
nσ → ∆σ → ∆τ o = n∆(σ → τ ) o. The case for base types is delegates to plugins (Plugin Require-
ment 12.1.19). �

3Instead, in earlier proofs [Cai et al., 2014] the values of change terms were not change values, but had to be related to
change values through a logical relation; see Sec. 15.4.
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Plugin Requirement 12.1.19 (Base change types)
For each base type ι, the plugin de�nes a change type ∆ι such that ∆ n ι o = n∆ι o. �

We refer to values of change types as change values or just changes.

Notation 12.1.20
We write basic change structures for types τ̃ , not ñτ o, and dv B v1 ↪→ v2 : τ , not dv B v1 ↪→ v2 :
nτ o. We also write consistently n∆τ o, not ∆ nτ o. �

12.1.4 Validity as a logical relation

Next, we show an equivalent de�nition of validity for values of terms, directly by induction on
types, as a ternary logical relation between a change, its source and destination. A typical logical
relation constrains functions to map related input to related outputs. In a twist, validity constrains
function changes to map related inputs to related outputs.

De�nition 12.1.21 (Change validity)
We say that dv is a (valid) change from v1 to v2 (on type τ ), and write dv B v1 ↪→ v2 : τ , if dv : n∆τ o,
v1, v2 : nτ o and dv is a “valid” description of the di�erence from v1 to v2, as we de�ne in Fig. 12.1e.�

The key equations for function types are:

∆(σ → τ ) = σ → ∆σ → ∆τ

df B f1 ↪→ f2 : σ → τ = ∀da B a1 ↪→ a2 : σ . df a1 da B f1 a1 ↪→ f2 a2 : τ

Remark 12.1.22
We have kept repeating the idea that valid function changes map valid input changes to valid output
changes. As seen in Sec. 10.4 and Lemmas 12.1.10 and 12.1.14, such valid outputs can in turn be
valid function changes. We’ll see the same idea at work in Lemma 12.1.27, in the correctness proof
of D n – o.

As we have �nally seen in this section, this de�nition of validity can be formalized as a logical
relation, de�ned by induction on types. We’ll later take for granted the consequences of validity,
together with lemmas such as Lemma 12.1.10. �

12.1.5 Change structures on typing contexts

To describe changes to the inputs of a term, we now also introduce change contexts ∆Γ, environment
changes dρ : n∆Γ o, and validity for environment changes dρ B ρ1 ↪→ ρ2 : Γ.

A valid environment change from ρ1 : n Γ o to ρ2 : n Γ o is an environment dρ : n∆Γ o that
extends environment ρ1 with valid changes for each entry. We �rst de�ne the shape of environment
changes through change contexts:

De�nition 12.1.23 (Change contexts)
For each context Γ we de�ne change context ∆Γ as follows:

∆ε = ε

∆ (Γ,x : τ ) = ∆Γ,x : τ , dx : ∆τ . �

Then, we describe validity of environment changes via a judgment.
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De�nition 12.1.24 (Environment change validity)
We de�ne validity for environment changes through judgment dρ B ρ1 ↪→ ρ2 : Γ, pronounced “dρ
is an environment change from ρ1 to ρ2 (at context Γ)”, where ρ1, ρ2 : n Γ o , dρ : n∆Γ o, via the
following inference rules:

� B � ↪→ � : ε
dρ B ρ1 ↪→ ρ2 : Γ da B a1 ↪→ a2 : τ

(dρ,x = a1,dx = da) B (ρ1,x = a1) ↪→ (ρ2,x = a2) : Γ,x : τ

�

De�nition 12.1.25 (Basic change structures for contexts)
To each context Γ we associate a basic change structure on set n Γ o. We take n∆Γ o as change set
and reuse validity on environment changes (De�nition 12.1.24). �

Notation 12.1.26
We write dρ B ρ1 ↪→ ρ2 : Γ rather than dρ B ρ1 ↪→ ρ2 : n Γ o. �

Finally, to state and prove correctness of di�erentiation, we are going to need to discuss function
changes on term semantics. The semantics of a term Γ ` t : τ is a function n t o from environments
in n Γ o to values in nτ o. To discuss changes to n t o we need a basic change structure on function
space n Γ o→ nτ o.

Lemma 12.1.27
The construction of basic change structures on function spaces (De�nition 12.1.8) associates to each
context Γ and type τ a basic change structure Γ̃ → τ̃ on function space n Γ o→ nτ o. �

Notation 12.1.28
As usual, we write the change set as ∆(n Γ o → nτ o); for validity, we write df B f1 ↪→ f2 : Γ,τ
rather than df B f1 ↪→ f2 : n Γ o→ nτ o. �

12.2 Correctness of di�erentiation
In this section we state and prove correctness of di�erentiation, a term-to-term transformation
written D n t o that produces incremental programs. We recall that all our results apply only to
well-typed terms (since we formalize no other ones).

Earlier, we described how D n – o behaves through Slogan 10.3.3 — here is it again, for reference:

Slogan 10.3.3
Term D n t o maps input changes to output changes. That is, D n t o applied to initial base inputs and
valid input changes (from initial inputs to updated inputs) gives a valid output change from t applied
on old inputs to t applied on new inputs. �

In our slogan we do not specify what we meant by inputs, though we gave examples during
the discussion. We have now the notions needed for a more precise statement. Term D n t o must
satisfy our slogan for two sorts of inputs:

1. Evaluating D n t o must map an environment change dρ from ρ1 to ρ2 into a valid result
change nD n t o o dρ, going from n t o ρ1 to n t o ρ2.

2. As we learned since stating our slogan, validity is de�ned by recursion over types. If term t has
type σ → τ , change nD n t o o dρ can in turn be a (valid) function change (Remark 12.1.22).
Function changes map valid changes for their inputs to valid changes for their outputs.
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Instead of saying that nD n t o o maps dρ B ρ1 ↪→ ρ2 : Γ to a change from n t o ρ1 to n t o ρ2,
we can say that function n t o∆ = λρ dρ → nD n t o o dρ must be a nil change for n t o, that is, a
derivative for n t o. We give a name to this function change, and state D n – o’s correctness theorem.

De�nition 12.2.1 (Incremental semantics)
We de�ne the incremental semantics of a well-typed term Γ ` t : τ in terms of di�erentiation as:

n t o∆ = (λρ1 dρ → nD n t o o dρ) : n Γ o→ n∆Γ o→ n∆τ o . �

Theorem 12.2.2 (D n –o is correct)
Function n t o∆ is a derivative of n t o. That is, if Γ ` t : τ and dρ B ρ1 ↪→ ρ2 : Γ then nD n t o o dρ B
n t o ρ1 ↪→ n t o ρ2 : τ . �

For now we discuss this statement further; we defer the proof to Sec. 12.2.2.

Remark 12.2.3 (Why n –o∆ ignores ρ1)
You might wonder why n t o∆ = λρ1 dρ → nD n t o o dρ appears to ignore ρ1. But for all
dρ B ρ1 ↪→ ρ2 : Γ, change environment dρ extends ρ1, which hence provides no further information.
We are only interested in applying n t o∆ to valid environment changes dρ, so n t o∆ ρ1 dρ can
safely ignore ρ1. �

Remark 12.2.4 (Term derivatives)
In Chapter 10, we suggested that D n t o only produced a derivative for closed terms, not for open
ones. But n t o∆ = λρ dρ → nD n t o o dρ is always a nil change and derivative of n t o for any
Γ ` t : τ . There is no contradiction, because the value of D n t o is nD n t o o dρ, which is only a
nil change if dρ is a nil change as well. In particular, for closed terms (Γ = ε), dρ must equal the
empty environment �, hence a nil change. If τ is a function type, df = nD n t o o dρ accepts further
inputs; since df must be a valid function change, it will also map them to valid outputs as required
by our Slogan 10.3.3. Finally, if Γ = ε and τ is a function type, then df = nD n t o o � is a derivative
of f = n t o �.

We summarize this remark with the following de�nition and corollary. �

De�nition 12.2.5 (Derivatives of terms)
For all closed terms of function type ` t : σ → τ , we call D n t o the (term) derivative of t. �

Corollary 12.2.6 (Term derivatives evaluate to derivatives)
For all closed terms of function type ` t : σ → τ , function nD n t o o � is a derivative of n t o �. �

Proof. Because n t o∆ is a derivative (Theorem 12.2.2), and applying derivative n t o∆ to nil change �
gives a derivative (Lemma 12.1.13). �

Remark 12.2.7
We typically talk a derivative of a function value f : A → B, not the derivative, since multiple
di�erent functions can satisfy the speci�cation of derivatives. We talk about the derivative to refer
to a canonically chosen derivative. For terms and their semantics, the canonical derivative the one
produced by di�erentiation. For language primitives, the canonical derivative is the one chosen by
the language plugin under consideration. �

Theorem 12.2.2 only makes sense if D n – o has the right static semantics:
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Lemma 12.2.8 (Typing of D n –o)
Typing rule

Γ ` t : τ
∆Γ ` D n t o : ∆τ

Derive

is derivable. �

After we’ll de�ne ⊕, in next chapter, we’ll be able to relate ⊕ to validity, by proving Lemma 13.4.4,
which we state in advance here:

Lemma 13.4.4 (⊕ agrees with validity)
If dv B v1 ↪→ v2 : τ then v1 ⊕ dv = v2. �

Hence, updating base result n t o ρ1 by change nD n t o o dρ via ⊕ gives the updated result
n t o ρ2.

Corollary 13.4.5 (D n –o is correct, corollary)
If Γ ` t : τ and dρ B ρ1 ↪→ ρ2 : Γ then n t o ρ1 ⊕ nD n t o o dρ = n t o ρ2. �

We anticipate the proof of this corollary:

Proof. First, di�erentiation is correct (Theorem 12.2.2), so under the hypotheses

nD n t o o dρ B n t o ρ1 ↪→ n t o ρ2 : τ ;

that judgement implies the thesis

n t o ρ1 ⊕ nD n t o o dρ = n t o ρ2

because ⊕ agrees with validty (Lemma 13.4.4). �

12.2.1 Plugin requirements
Di�erentiation is extended by plugins on constants, so plugins must prove their extensions correct.

Plugin Requirement 12.2.9 (Typing of DC n –o)
For all `C c : τ , the plugin de�nes DC n c o satisfying ` DC n c o : ∆τ . �

Plugin Requirement 12.2.10 (Correctness of DC n –o)
For all `C c : τ ,

�
DC n c o � is a derivative for n c o. �

Since constants are typed in the empty context, and the only change for an empty environment
is an empty environment, Plugin Requirement 12.2.10 means that for all `C c : τ we have�

DC n c o � � B n c o � ↪→ n c o � : τ .

12.2.2 Correctness proof
We next recall D n – o’s de�nition and prove it satis�es its correctness statement Theorem 12.2.2.
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De�nition 10.5.1 (Di�erentiation)
Di�erentiation is the following term transformation:

D n λ(x : σ ) → t o = λ(x : σ ) (dx : ∆σ ) → D n t o
D n s t o = D n s o t D n t o

D n x o = dx

D n c o = DC n c o �

where DC n c o de�nes di�erentiation on primitives and is provided by language plugins (see
Appendix A.2.5), and dx stands for a variable generated by pre�xing x’s name with d, so that
D n y o = dy and so on.

Before correctness, we prove Lemma 12.2.8:

Lemma 12.2.8 (Typing of D n –o)
Typing rule

Γ ` t : τ
∆Γ ` D n t o : ∆τ

Derive

is derivable. �

Proof. The thesis can be proven by induction on the typing derivation Γ ` t : τ . The case for
constants is delegated to plugins in Plugin Requirement 12.2.9. �

We prove Theorem 12.2.2 using a typical logical relations strategy. We proceed by induction
on term t and prove for each case that if D n – o preserves validity on subterms of t, then also
D n t o preserves validity. Hence, if the input environment change dρ is valid, then the result of
di�erentiation evaluates to valid change nD n t o o dρ.

Readers familiar with logical relations proofs should be able to reproduce this proof on their
own, as it is rather standard, once one uses the given de�nitions. In particular, this proof resembles
closely the proof of the abstraction theorem or relational parametricity (as given by Wadler [1989,
Sec. 6] or by Bernardy and Lasson [2011, Sec. 3.3, Theorem 3]) and the proof of the fundamental
theorem of logical relations by Statman [1985].

Nevertheless, we spell this proof out, and use it to motivate how D n – o is de�ned, more formally
than we did in Sec. 10.5. For each case, we �rst give a short proof sketch, and then redo the proof in
more detail to make the proof easier to follow.

Theorem 12.2.2 (D n –o is correct)
Function n t o∆ is a derivative of n t o. That is, if Γ ` t : τ and dρ B ρ1 ↪→ ρ2 : Γ then nD n t o o dρ B
n t o ρ1 ↪→ n t o ρ2 : τ . �

Proof. By induction on typing derivation Γ ` t : τ .

• Case Γ ` x : τ . The thesis is that nD n x o o is a derivative for n x o, that is nD n x o o dρ B
n x o ρ1 ↪→ n x o ρ2 : τ . Since dρ is a valid environment change from ρ1 to ρ2, n dx o dρ is a
valid change from n x o ρ1 to n x o ρ2. Hence, de�ning D n x o = dx satis�es our thesis.

• Case Γ ` s t : τ . The thesis is that nD n s t o o is a derivative for n s t o, that is nD n s t o o dρ B
n s t o ρ1 ↪→ n s t o ρ2 : τ . By inversion of typing, there is some typeσ such that Γ ` s : σ → τ
and Γ ` t : σ .
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To prove the thesis, in short, you can apply the inductive hypothesis to s and t, obtaining respec-
tively that nD n s o o and nD n t o o are derivatives for n s o and n t o. In particular, nD n s o o
evaluates to a validity-preserving function change. Term D n s t o, that is D n s o t D n t o,
applies validity-preserving function D n s o to valid input change D n t o, and this produces a
valid change for s t as required.
In detail, our thesis is that for all dρ B ρ1 ↪→ ρ2 : Γ we have

nD n s t o o dρ B n s t o ρ1 ↪→ n s t o ρ2 : τ ,

where n s t o ρ = (n s o ρ) (n t o ρ) and

nD n s t o o dρ
= nD n s o t D n t o o dρ
= (nD n s o o dρ) (n t o dρ) (nD n t o o dρ)
= (nD n s o o dρ) (n t o ρ1) (nD n t o o dρ)

The last step relies on n t o dρ = n t o ρ1. Since weakening preserves meaning (Lemma A.2.8),
this follows because dρ : n∆Γ o extends ρ1 : n Γ o, and t can be typed in context Γ.
Our thesis becomes

nD n s o o dρ (n t o ρ1) (nD n t o o dρ) B n s o ρ1 (n t o ρ1) ↪→ n s o ρ2 (n t o ρ2) : τ .

By the inductive hypothesis on s and t we have

nD n s o o dρ B n s o ρ1 ↪→ n s o ρ2 : σ → τ

nD n t o o dρ B n t o ρ1 ↪→ n t o ρ2 : σ .

Since n s o is a function, its validity means

∀da B a1 ↪→ a2 : σ . nD n s o o dρ a1 da B n s o ρ1 a1 ↪→ n s o ρ2 a2 : τ .

Instantiating in this statement the hypothesis da B a1 ↪→ a2 : σ by nD n t o o dρ B
n t o ρ1 ↪→ n t o ρ2 : σ gives the thesis.

• Case Γ ` λx → t : σ → τ . By inversion of typing, Γ, x : σ ` t : τ . By typing of D n – o you
can show that

∆Γ, x : σ , dx : ∆σ ` D n t o : ∆τ .

In short, our thesis is that n λx → t o∆ = λρ1 dρ → n λx dx → D n t o o dρ is a derivative of
n λx → t o. After a few simpli�cations, our thesis reduces to

nD n t o o (dρ, x = a1, dx = da) B n t o (ρ1, x = a1) ↪→ n t o (ρ2, x = a2) : τ

for all dρ B ρ1 ↪→ ρ2 : Γ and da B a1 ↪→ a2 : σ . But then, the thesis is simply that n t o∆ is
the derivative of n t o, which is true by inductive hypothesis.
More in detail, our thesis is that n λx → t o∆ is a derivative for n λx → t o, that is

∀dρ B ρ1 ↪→ ρ2 : Γ.
nD n λx → t o o dρ B n λx → t o ρ1 ↪→ n λx → t o ρ2 : σ → τ (12.1)
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By simplifying, the thesis Eq. (12.1) becomes

∀dρ B ρ1 ↪→ ρ2 : Γ.
λa1 da→ nD n t o o (dρ, x = a1, dx = da) B

(λa1 → n t o (ρ1, x = a1)) ↪→ (λa2 → n t o (ρ2, x = a2)) : σ → τ . (12.2)

By de�nition of validity of function type, the thesis Eq. (12.2) becomes

∀dρ B ρ1 ↪→ ρ2 : Γ. ∀da B a1 ↪→ a2 : σ .
nD n t o o (dρ, x = a1, dx = da) B

n t o (ρ1, x = a1) ↪→ n t o (ρ2, x = a2) : τ . (12.3)

To prove the rewritten thesis Eq. (12.3), take the inductive hypothesis on t: it says that
nD n t o o is a derivative for n t o, so nD n t o o maps valid environment changes on Γ, x : σ to
valid changes on τ . But by inversion of the validity judgment, all valid environment changes
on Γ, x : σ can be written as

(dρ,x = a1,dx = da) B (ρ1,x = a1) ↪→ (ρ2,x = a2) : Γ,x : σ ,

for valid changes dρ B ρ1 ↪→ ρ2 : Γ and da B a1 ↪→ a2 : σ . So, the inductive hypothesis is
that

∀dρ B ρ1 ↪→ ρ2 : Γ. ∀da B a1 ↪→ a2 : σ .
nD n t o o (dρ, x = a1, dx = da) B

n t o (ρ1, x = a1) ↪→ n t o (ρ2, x = a2) : τ . (12.4)

But that is exactly our thesis Eq. (12.3), so we’re done!

• Case Γ ` c : τ . In essence, since weakening preserves meaning, we can rewrite the thesis to
match Plugin Requirement 12.2.10.
In more detail, the thesis is that DC n c o is a derivative for c, that is, if dρ B ρ1 ↪→ ρ2 : Γ then
nD n c o o dρ B n c o ρ1 ↪→ n c o ρ2 : τ . Since constants don’t depend on the environment
and weakening preserves meaning (Lemma A.2.8), and by the de�nitions of n – o and D n – o
on constants, the thesis can be simpli�ed to

�
DC n c o � � B n c o � ↪→ n c o � : τ , which is

delegated to plugins in Plugin Requirement 12.2.10. �

12.3 Discussion

12.3.1 The correctness statement
We might have asked for the following correctness property:

Theorem 12.3.1 (Incorrect correctness statement)
If Γ ` t : τ and ρ1 ⊕ dρ = ρ2 then (n t o ρ1) ⊕ (nD n t o o dρ) = (n t o ρ2). �

However, this property is not quite right. We can only prove correctness if we restrict the
statement to input changes dρ that are valid. Moreover, to prove this statement by induction we
need to strengthen its conclusion: we require that the output change nD n t o o dρ is also valid. To
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see why, consider term (λx → s) t: Here the output of t is an input of s. Similarly, in D n (λx → s) t o,
the output of D n t o becomes an input change for subterm D n t o, and D n s o behaves correctly
only if only if D n t o produces a valid change.

Typically, change types contain values that invalid in some sense, but incremental programs
will preserve validity. In particular, valid changes between functions are in turn functions that take
valid input changes to valid output changes. This is why we formalize validity as a logical relation.

12.3.2 Invalid input changes
To see concretely why invalid changes, in general, can cause derivatives to produce incorrect results,
consider again grandTotal = λxs ys → sum (merge xs ys) from Sec. 10.2. Suppose a bag change
dxs removes an element 20 from input bag xs, while dys makes no changes to ys: in this case, the
output should decrease, so dz = dgrandTotal xs dxs ys dys should be −20. However, that is only
correct if 20 is actually an element of xs. Otherwise, xs ⊕ dxs will make no change to xs, hence the
correct output change dz would be 0 instead of −20. Similar but trickier issues apply with function
changes; see also Sec. 15.2.

12.3.3 Alternative environment changes
Environment changes can also be de�ned di�erently. We will use this alternative de�nition later (in
Appendix D.2.2).

A change dρ from ρ1 to ρ2 contains a copy of ρ1. Thanks to this copy, we can use an environ-
ment change as environment for the result of di�erentiation, that is, we can evaluate D n t o with
environment dρ, and De�nition 12.2.1 can de�ne n t o∆ as λρ1 dρ → nD n t o o dρ.

But we could adapt de�nitions to omit the copy of ρ1 from dρ, by setting

∆ (Γ,x : τ ) = ∆Γ, dx : ∆τ

and adapting other de�nitions. Evaluating D n t o still requires base inputs; we could then set n t o∆ =
λρ1 dρ → nD n t o o (ρ1, dρ), where ρ1, dρ simply merges the two environments appropriately
(we omit a formal de�nition). This is the approach taken by Cai et al. [2014]. When proving
Theorem 12.2.2, using one or the other de�nition for environment changes makes little di�erence;
if we embed the base environment in environment changes, we reduce noise because we need not
de�ne environment meging formally.

Later (in Appendix D.2.2) we will deal with environment explicitly, and manipulate them in
programs. Then we will use this alternative de�nition for environment changes, since it will be
convenient to store base environments separately from environment changes.

12.3.4 Capture avoidance
Di�erentiation generates new names, so a correct implementation must prevent accidental capture.
Till now we have ignored this problem.

Using de Bruijn indexes Our mechanization has no capture issues because it uses de Bruijn
indexes. Change context just alternate variables for base inputs and input changes. A context such
as Γ = x : Z, y : Bool is encoded as Γ = Z,Bool; its change context is ∆Γ = Z,∆Z,Bool,∆Bool. This
solution is correct and robust, and is the one we rely on.

Alternatively, we can mechanize ILC using separate syntax for change terms dt that use separate
namespaces for base variables and change variables.
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ds, dt ::= dc
| λ(x : σ ) (dx : ∆σ ) → dt
| ds t dt
| dx

In that case, change variables live in a separate namespace. Example context Γ = Z,Bool gives
rise to a di�erent sort of change context, ∆Γ = ∆Z,∆Bool. And a change term in context Γ is
evaluted with separate environments for Γ and ∆Γ. This is appealing, because it allows de�ning
di�erentiation and proving it correct without using weakening and applying its proof of soundness.
We still need to use weakening to convert change terms to their equivalents in the base language,
but proving that conversion correct is more straightforward.

Using names Next, we discuss issues in implementing this transformation with names rather
than de Bruijn indexes. Using names rather than de Bruijn indexes makes terms more readable; this
is also why in this thesis we use names in our on-paper formalization.

Unlike the rest of this chapter, we keep this discussion informal, also because we have not
mechanized any de�nitions using names (as it may be possible using nominal logic), nor attempted
formal proofs. The rest of the thesis does not depend on this material, so readers might want to
skip to next section.

Using names introduces the risk of capture, as it is common for name-generating transfor-
mations [Erdweg et al., 2014]. For instance, di�erentiating term t = λx → f dx gives D n t o =
λx dx → df dx ddx. Here, variable dx represents a base input and is free in t, yet it is incorrectly
captured in D n t o by the other variable dx, the one representing x’s change. Di�erentiation gives
instead a correct result if we α-rename x in t to any other name (more on that in a moment).

A few workarounds and �xes are possible.

• As a workaround, we can forbid names starting with the letter d for variables in base terms,
as we do in our examples; that’s formally correct but pretty unsatisfactory and inelegant.
With this approach, our term t = λx → f dx is simply forbidden.

• As a better workaround, instead of pre�xing variable names with d, we can add change
variables as a separate construct to the syntax of variables and forbid di�erentiation on terms
that containing change variables. This is a variant of the earlier approach using separate
change terms. While we used this approach in our prototype implementation in Scala [Cai
et al., 2014], it makes our output language annoyingly non-standard. Converting to a standard
language using names (not de Bruijn indexes) raises again capture issues.

• We can try to α-rename existing bound variables, as in the implementation of capture-
avoiding substitution. As mentioned, in our case, we can rename bound variable x to y and
get t ′ = λy → f dx. Di�erentiation gives the correct result D n t ′ o = λy dy → df dx ddx.
In general we can de�ne D n λx → t o = λy dy → D n t [x := y ] o where neither y nor dy
appears free in t; that is, we search for a fresh variable y (which, being fresh, does not appear
anywhere else) such that also dy does not appear free in t.
This solution is however subtle: it reuses ideas from capture-avoiding substitution, which is
well-known to be subtle. We have not attempted to formally prove such a solution correct (or
even test it) and have no plan to do so.

• Finally and most easily we can α-rename new bound variables, the ones used to refer to
changes, or rather, only pick them fresh. But if we pick, say, fresh variable dx1 to refer to
the change of variable x, we must use dx1 consistently for every occurrence of x, so that



94 Chapter 12. Changes and di�erentiation, formally

D n λx → x o is not λdx1 → dx2. Hence, we extend D n – o to also take a map from names to
names as follows:

D n λ(x : σ ) → t,m o = λ(x : σ ) (dx : ∆σ ) → D n t, (m [x → dx ]) o
D n s t,m o = D n s,m o t D n t,m o

D n x,m o = m(x)

D n c,m o = DC n c o

where m(x) represents lookup of x in map m, dx is now a fresh variable that does not appear
in t, and m [x → dx ] extend m with a new mapping from x to dx.

But this approach, that is using a map from base variables to change variables, a�ects the
interface of di�erentiation. In particular, it a�ects which variables are free in output terms,
hence we must also update the de�nition of ∆Γ and derived typing rule Derive. With this ap-
proach, if term s is closed then D n s, emptyMap o gives a result α-equivalent to the old D n s o,
as long as s triggers no capture issues. But if instead s is open, invoking D n s, emptyMap o is
not meaningful: we must pass an initial map m containing mappings from s’s free variables
to fresh variables for their changes. These change variables appear free in D n s,m o, hence
we must update typing rule Derive, and modify ∆Γ to use m.

We de�ne ∆mΓ by adding m as a parameter to ∆Γ, and use it in a modi�ed rule Derive’:

∆mε = ε

∆m (Γ,x : τ ) = ∆mΓ,x : τ ,m(x) : ∆τ .

Γ ` t : τ
∆mΓ ` D n t,m o : ∆τ

Derive’

We conjecture that Derive’ holds and that D n t,m o is correct, but we have attempted no
formal proof.

12.4 Plugin requirement summary

For reference, we repeat here plugin requirements spread through the chapter.

Plugin Requirement 12.1.16 (Basic change structures on base types)
For each base type ι, the plugin de�nes a basic change structure on n ι o that we write ι̃. �

Plugin Requirement 12.1.19 (Base change types)
For each base type ι, the plugin de�nes a change type ∆ι such that ∆ n ι o = n∆ι o. �

Plugin Requirement 12.2.9 (Typing of DC n –o)
For all `C c : τ , the plugin de�nes DC n c o satisfying ` DC n c o : ∆τ . �

Plugin Requirement 12.2.10 (Correctness of DC n –o)
For all `C c : τ ,

�
DC n c o � is a derivative for n c o. �
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12.5 Chapter conclusion
In this chapter, we have formally de�ned changes for values and environments of our language,
and when changes are valid. Through these de�nitions, we have explained that D n t o is correct,
that is, that it maps changes to the input environment to changes to the output environment. All of
this assumes, among other things, that language plugins de�ne valid changes for their base types
and derivatives for their primitives.

In next chapter we discuss operations we provide to construct and use changes. These operations
will be especially useful to provide derivatives of primitives.
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Chapter 13

Change structures

In the previous chapter, we have shown that evaluating the result of di�erentiation produces a valid
change dv from the old output v1 to the new one v2. To compute v2 from v1 and dv, in this chapter
we introduce formally the operator ⊕ mentioned earlier.

To de�ne di�erentiation on primitives, plugins need a few operations on changes, not just ⊕, 	,
} and 0.

To formalize these operators and specify their behavior, we extend the notion of basic change
structure into the notion of change structure in Sec. 13.1. The change structure for function spaces is
not entirely intuitive, so we motivate it in Sec. 13.2. Then, we show how to take change structures
on A and B and de�ne new ones on A → B in Sec. 13.3. Using these structures, we �nally show
that starting from change structures for base types, we de�ne change structures for all types τ and
contexts Γ in Sec. 13.4, completing the core theory of changes.

13.1 Formally de�ning ⊕ and change structures

In this section, we de�ne what is a change structure on a set V . A change structure V̂ extends a basic
change structure Ṽ with change operators ⊕, 	, } and 0. Change structures also require change
operators to respect validity, as described below. Key properties of change structures follow in
Sec. 13.1.2.

As usual, we’ll use metavariables v, v1, v2, . . .will range over elements ofV , while dv, dv1, dv2, . . .
will range over elements of ∆V .

Let’s �rst recall change operators. Operator ⊕ (“oplus”) updates a value with a change: If dv is a
valid change from v1 to v2, then v1 ⊕ dv (read as “v1 updated by dv” or “v1 oplus dv”) is guaranteed
to return v2. Operator 	 (“ominus”) produces a di�erence between two values: v2 	 v1 is a valid
change from v1 to v2. Operator 0 (“nil”) produces nil changes: 0v is a nil change for v. Finally,
change composition } (“ocompose”) “pastes changes together”: if dv1 is a valid change from v1 to
v2 and dv2 is a valid change from v2 to v3, then dv1 } dv2 (read “dv1 composed with dv2”) is a valid
change from v1 to v3.

We summarize these descriptions in the following de�nition.

De�nition 13.1.1
A change structure V̂ over a set V requires:

(a) A basic change structure for V (hence change set ∆V and validity dv B v1 ↪→ v2 : V ).

97
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(b) An update operation ⊕ : V → ∆V → V that updates a value with a change. Update must
agree with validity: for all dv B v1 ↪→ v2 : V we require v1 ⊕ dv = v2.

(c) A nil change operation 0 : V → ∆V , that must produce nil changes: for all v : V we require
0v B v ↪→ v : V .

(d) a di�erence operation 	 : V → V → ∆V that produces a change across two values: for all
v1, v2 : V we require v2 	 v1 B v1 ↪→ v2 : V .

(e) a change composition operation } : ∆V → ∆V → ∆V , that composes together two changes
relative to a base value. Change composition must preserve validity: for all dv1 B v1 ↪→ v2 : V
and dv2 B v2 ↪→ v3 : V we require dv1 } dv2 B v1 ↪→ v3 : V . �

Notation 13.1.2
Operators ⊕ and 	 can be subscripted to highlight their base set, but we will usually omit such
subscripts. Moreover, ⊕ is left-associative, so that v ⊕ dv1 ⊕ dv2 means (v ⊕ dv1) ⊕ dv2.

Finally, whenever we have a change structure such as Â, B̂, V̂ , and so on, we write respectively
A, B, V to refer to its base set. �

13.1.1 Example: Group changes
As an example, we show next that each group induces a change structure on its carrier. This change
structure also subsumes basic change structures we saw earlier on integers.
De�nition 13.1.3 (Change structure on groups G)
Given any group (G, e,+,−) we can de�ne a change structure Ĝ on carrier set G as follows.

(a) The change set is G.

(b) Validity is de�ned as dg B g1 ↪→ g2 : G if and only if g2 = g1 + dg.

(c) Change update coincides with +: g1 ⊕ dg = g1 + dg. Hence ⊕ agrees perfectly with validity:
for all g1 ∈ G, all changes dg are valid from g1 to g1 ⊕ dg (that is dg B g1 ↪→ g1 ⊕ dg : G).

(d) We de�ne di�erence as g2 	 g1 = (−g1) + g2. Verifying g2 	 g1 B g1 ↪→ g2 : G reduces to
verifying g1 + ((−g1) + g2) = g2, which follows from group axioms.

(e) The only nil change is the identity element: 0g = e. Validity 0g B g ↪→ g : G reduces to
g + e = g which follows from group axioms.

(f) Change composition also coincides with +: dg1}dg2 = dg1+dg2. Let’s prove that composition
respects validity. Our hypothesis is dg1 B g1 ↪→ g2 : G and dg2 B g2 ↪→ g3 : G. Because ⊕
agrees perfectly with validity, the hypothesis is equivalent to g2 = g1 ⊕ dg1 and

g3 = g2 ⊕ dg2 = (g1 ⊕ dg1) ⊕ dg2.

Our thesis is dg1 } dg2 B g1 ↪→ g3 : G, that is

g3 = g1 ⊕ (dg1 } dg2).

Hence the thesis reduces to

(g1 ⊕ dg1) ⊕ dg2 = g1 ⊕ (dg1 } dg2),

hence to g1 + (dg1 + dg2) = (g1 + dg1) + dg2, which is just the associative law for group G. �
As we show later, group change structures are useful to support aggregation.
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13.1.2 Properties of change structures
To understand better the de�nition of change structures, we present next a few lemmas following
from this de�nition.
Lemma 13.1.4 (	 inverts ⊕)
⊕ inverts 	, that is

v1 ⊕ (v2 	 v1) = v2,

for change structure V̂ and any values v1, v2 : V . �

Proof. For change structures, we know v2 	 v1 B v1 ↪→ v2 : V , and v1 ⊕ (v2 	 v1) = v2 follows.
More in detail: Change dv = v2 	 v1 is a valid change from v1 to v2 (because 	 produces valid

changes, v2 	 v1 B v1 ↪→ v2 : V ), so updating dv’s source v1 with dv produces dv’s destination v2
(because ⊕ agrees with validity, that is if dv B v1 ↪→ v2 : V then v1 ⊕ dv = v2). �

Lemma 13.1.5 (A change can’t be valid for two destinations with the same source)
Given a change dv : ∆V and a source v1 : V , dv can only be valid with v1 as source for a single
destination. That is, if dv B v1 ↪→ v2a : V and dv B v1 ↪→ v2b : V then v2a = v2b . �

Proof. The proof follows, intuitively, because ⊕ also maps change dv and its source v1 to its destina-
tion, and ⊕ is a function.

More technically, since ⊕ respects validity, the hypotheses mean that v2a = v1 ⊕ dv = v2b as
required. �

Beware that, changes can be valid for multiple sources, and associate them to di�erent destination.
For instance, integer 0 is a valid change for all integers.

If a change dv has source v, dv’s destination equals v ⊕ dv. So, to specify that dv is valid with
source v, without mentioning dv’s destination, we introduce the following de�nition.

De�nition 13.1.6 (One-sided validity)
We de�ne relation VA as {(v, dv) ∈ A × ∆A | dv B v ↪→ v ⊕ dv : V }. �

We use this de�nition right away:

Lemma 13.1.7 (} and ⊕ interact correctly)
If (v1, dv1) ∈ VV and (v1 ⊕ dv1, dv2) ∈ VV then v1 ⊕ (dv1 } dv2) = v1 ⊕ dv1 ⊕ dv2. �

Proof. We know that } preserves validity, so under the hypotheses (v1, dv1) ∈ VV and (v1 ⊕
dv1, dv2) ∈ VV we get that dv = dv1 } dv2 is a valid change from v1 to v1 ⊕ dv1 ⊕ dv2:

dv1 } dv2 B v1 ↪→ v1 : V ⊕ dv1 ⊕ dv2.

Hence, updating dv’s source v1 with dv produces dv’s destination v1 ⊕ dv1 ⊕ dv2:

v1 ⊕ (dv1 } dv2) = v1 ⊕ dv1 ⊕ dv2. �

We can de�ne 0 in terms of other operations, and prove they satisfy their requirements for
change structures.

Lemma 13.1.8 (0 can be derived from 	)
If we de�ne 0v = v 	 v, then 0 produces valid changes as required (0v B v ↪→ v : V ), for any change
structure V̂ and value v : V . �

Proof. This follows from validity of 	 (v2 	 v1 B v1 ↪→ v2 : V ) instantiated with v1 = v and v2 = v.�
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Moreover, nil changes are a right identity element for ⊕:

Corollary 13.1.9 (Nil changes are identity elements)
Any nil change dv for a value v is a right identity element for ⊕, that is we have v ⊕ dv = v for
every set V with a basic change structure, every element v ∈ V and every nil change dv for v. �

Proof. This follows from Lemma 13.4.4 and the de�nition of nil changes. �

The converse of this theorem does not hold: there exists changes dv such that v ⊕ dv = v yet
dv is not a valid change from v to v. More in general, v1 ⊕ dv = v2 does not imply that dv is a
valid change. For instance, under earlier de�nitions for changes on naturals, if we take v = 0 and
dv = −5, we have v ⊕ dv = v even though dv is not valid; examples of invalid changes on functions
are discussed at Sec. 12.3.2 and Sec. 15.2. However, we prefer to de�ne “dv is a nil change” as we do,
to imply that dv is valid, not just a neutral element.

13.2 Operations on function changes, informally

13.2.1 Examples of nil changes

We have not de�ned any change structure yet, but we can already exhibit nil changes for some
values, including a few functions.

Example 13.2.1
• An environment change for an empty environment � : n ε o must be an environment for the

empty context ∆ε = ε , so it must be the empty environment! In other words, if and only if
dρ B � ↪→ � : ε , then and only then dρ = � and, in particular, dρ is a nil change.

• If all values in an environment ρ have nil changes, the environment has a nil change dρ = 0ρ
associating each value to a nil change. Indeed, take a context Γ and a suitable environment
ρ : n Γ o. For each typing assumption x : τ in Γ, assume we have a nil change 0v for v. Then
we de�ne 0ρ : n∆Γ o by structural recursion on ρ as:

0� = �
0ρ,x=v = 0ρ , x = v, dx = 0v

Then we can see that 0ρ is indeed a nil change for ρ, that is, 0ρ B ρ ↪→ ρ : Γ.

• We have seen in Theorem 12.2.2 that, whenever Γ ` t : τ , n t o has nil change n t o∆. Moreover,
if we have an appropriate nil environment change dρ B ρ ↪→ ρ : Γ (which we often do, as
discussed above), then we also get a nil change n t o∆ ρ dρ for n t o ρ:

n t o∆ ρ dρ B n t o ρ ↪→ n t o ρ : τ .

In particular, for all closed well-typed terms ` t : τ we have

n t o∆ � � B n t o � ↪→ n t o � : τ . �
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13.2.2 Nil changes on arbitrary functions
We have discussed how to �nd a nil change 0f for a function f if we know the intension of f , that is,
its de�nition. What if we have only its extension, that is, its behavior? Can we still �nd 0f ? That’s
necessary to implement 0 as an object-language function 0 from f to 0f , since such a function does
not have access to f ’s implementation. That’s also necessary to de�ne 0 on metalanguage function
spaces — and we look at this case �rst.

We seek a nil change 0f for an arbitrary metalanguage function f : A→ B, where A and B are
arbitrary sets; we assume a basic change structure on A→ B, and will require A and B to support a
few additional operations. We require that

0f B f ↪→ f : A→ B. (13.1)

Equivalently, whenever da B a1 ↪→ a2 : A then 0f a1 da B f a1 ↪→ f a2 : B. By Lemma 13.4.4, it
follows that

f a1 ⊕ 0f a1 da = f a2, (13.2)
where a1 ⊕ da = a2.

To de�ne 0f we solve Eq. (13.2). To understand how, we use an analogy. ⊕ and 	 are intended
to resemble + and −. To solve f a1 + 0f a1 da = f a2, we subtract f a1 from both sides and write
0f a1 da = f a2 − f a1.

Similarly, here we use operator 	: 0f must equal

0f = λa1 da→ f (a1 ⊕ da) 	 f a1. (13.3)

Because b2 	 b1 B b1 ↪→ b2 : B for all b1, b2 : B, we can verify that 0f as de�ned by Eq. (13.3) satis�es
our original requirement Eq. (13.1), not just its weaker consequence Eq. (13.2).

We have shown that, to de�ne 0 on functions f : A → B, we can use 	 at type B. Without
using f ’s intension, we are aware of no alternative. To ensure 0f is de�ned for all f , we require that
change structures de�ne 	. We can then de�ne 0 as a derived operation via 0v = v 	 v, and verify
this derived de�nition satis�es requirements for 0–.

Next, we show how to de�ne 	 on functions. We seek a valid function change f2 	 f1 from f1 to
f2. We have just sought and found a valid change from f to f ; generalizing the reasoning we used,
we obtain that whenever da B a1 ↪→ a2 : A then we need to have (f2 	 f1) a1 da B f1 a1 ↪→ f2 a2 : B;
since a2 = a1 ⊕ da, we can de�ne

f2 	 f1 = λa1 da→ f2 (a1 ⊕ da) 	 f1 a1. (13.4)
One can verify that Eq. (13.4) de�nes f2 	 f1 as a valid function from f1 to f2, as desired. And

after de�ning f2 	 f1, we need no more to de�ne 0f separately using Eq. (13.3). We can just de�ne
0f = f 	 f simplify through the de�nition of 	 in Eq. (13.4), and reobtain Eq. (13.3) as a derived
equation:

0f = f 	 f = λa1 da→ f (a1 ⊕ da) 	 f a1,

We de�ned f2 	 f1 on metalanguage functions. We can also internalize change operators in our
object language, that is, de�ne for each type τ object-level terms ⊕τ , 	τ , and so on, with the same
behavior. We can de�ne object-language change operators such as 	 using the same equations.
However, the produced function change df is slow, because it recomputes the old output f1 a1,
computes the new output f2 a2 and takes the di�erence.

However, we can implement 	σ→τ using replacement changes, if they are supported by the
change structure on type τ . Let us de�ne 	τ as b2 	 b1 = !b2 and simplify Eq. (13.4); we obtain

f2 	 f1 = λa1 da→ !(f2 (a1 ⊕ da)).



102 Chapter 13. Change structures

We could even imagine allowing replacement changes on functions themselves. However, here
the bang operator needs to be de�ned to produce a function change that can be applied, hence

!f2 = λa1 da→ !(f2 (a1 ⊕ da)).

Alternatively, as we see in Appendix D, we could represent function changes not as functions
but as data through defunctionalization, and provide a function applying defunctionalized function
changes df : ∆(σ → τ ) to inputs t1 : σ and dt : ∆σ . In this case, !f2 would simply be another way to
produce defunctionalized function changes.

13.2.3 Constraining ⊕ on functions
Next, we discuss how ⊕ must be de�ned on functions, and show informally why we must de�ne
f1⊕df = λv → f1 x⊕df v 0v to prove that ⊕ on functions agrees with validity (that is, Lemma 13.4.4).

We know that a valid function change df B f1 ↪→ f2 : A → B takes valid input changes
dv B v1 ↪→ v2 : A to a valid output change df v1 dv B f1 v1 ↪→ f2 v2 : B. We require that ⊕ agrees
with validity (Lemma 13.4.4), so f2 = f1 ⊕ df , v2 = v1 ⊕ dv and

f2 v2 = (f1 ⊕ df ) (v1 ⊕ dv) = f1 v1 ⊕ df v1 dv. (13.5)

Instantiating dv with 0v gives equation

(f1 ⊕ df ) v1 = (f1 ⊕ df ) (v1 ⊕ 0v) = f1 v1 ⊕ df v1 0v,

which is not only a requirement on ⊕ for functions but also de�nes ⊕ e�ectively.

13.3 Families of change structures
In this section, we derive change structures for A → B and A × B from two change structures
Â and B̂. The change structure on A → B enables de�ning change structures for function types.
Similarly, the change structure on A × B enables de�ning a change structure for product types in a
language plugin, as described informally in Sec. 11.5. In Sec. 11.6 we also discuss informally change
structures for disjoint sums: Formally, we can derive a change structure for disjoint union of sets
A + B (from change structures for A and B), and this enables de�ning change structures for sum
types; we have mechanized the required proofs, but omit the tedious details here.

13.3.1 Change structures for function spaces
Sec. 13.2 introduces informally how to de�ne change operations on A→ B. Next, we de�ne formally
change structures on function spaces, and then prove its operations respect their constraints.

De�nition 13.3.1 (Change structure for A→ B)
Given change structures Â and B̂ we de�ne a change structure on their function space A → B,
written Â→ B̂, where:

(a) The change set is de�ned as: ∆(A→ B) = A→ ∆A→ ∆B.

(b) Validity is de�ned as

df B f1 ↪→ f2 : A→ B = ∀a1 da a2. (da B a1 ↪→ a2 : A)
implies (df a1 da B f1 a1 ↪→ f2 a2 : B).
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(c) We de�ne change update by

f1 ⊕ df = λa→ f1 a ⊕ df a 0a.

(d) We de�ne di�erence by

f2 	 f1 = λa da→ f2 (a ⊕ da) 	 f1 a.

(e) We de�ne 0 like in Lemma 13.1.8 as

0f = f 	 f .

(f) We de�ne change composition as

df 1 } df 2 = λa da→ df 1 a 0a } df 2 a da. �

Lemma 13.3.2
De�nition 13.3.1 de�nes a correct change structure Â→ B̂. �

Proof. • We prove that ⊕ agrees with validity on A → B. Consider f1, f2 : A → B and
df B f1 ↪→ f2 : A → B; we must show that f1 ⊕ df = f2. By functional extensionality, we
only need prove that (f1 ⊕ df ) a = f2 a, that is that f1 a ⊕ df a 0a = f2 a. Since ⊕ agrees with
validity on B, we just need to show that df a 0a B f1 a ↪→ f2 a : B, which follows because 0a
is a valid change from a to a and because df is a valid change from f1 to f2.

• We prove that 	 produces valid changes on A→ B. Consider df = f2 	 f1 for f1, f2 : A→ B.
For any valid input da B a1 ↪→ a2 : A, we must show that df produces a valid output with
the correct vertexes, that is, that df a1 da B f1 a1 ↪→ f2 a2 : B. Since ⊕ agrees with validity,
a2 equals a1 ⊕ da. By substituting away a2 and df the thesis becomes f2 (a1 ⊕ da) 	 f1 a1 B
f1 a1 ↪→ f2 (a1 ⊕ da) : B, which is true because 	 produces valid changes on B.

• 0 produces valid changes as proved in Lemma 13.1.8.

• We prove that change composition preserves validity on A→ B. That is, we must prove

df 1 a1 0a1 } df 2 a1 da B f1 a1 ↪→ f3 a2 : B

for every f1, f2, f3, df 1, df 2, a1, da, a2 satifsfying df 1 B f1 ↪→ f2 : A→ B, df 2 B f2 ↪→ f3 : A→
B and da B a1 ↪→ a2 : A.

Because change composition preserves validity on B, it’s enough to prove that (1) df 1 a1 0a1 B
f1 a1 ↪→ f2 a1 : B (2) df 2 a1 da B f2 a1 ↪→ f3 a2 : B. That is, intuitively, we create a composite
change using }, and it goes from f1 a1 to f3 a2 passing through f2 a1. Part (1) follows because
df 1 is a valid function change from f1 to f2, applied to a valid change 0a1 from a1 to a1. Part
(2) follows because df 2 is a valid function change from f2 to f3, applied to a valid change da
from a1 to a2. �
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13.3.2 Change structures for products
We can de�ne change structures on products A × B, given change structures on A and B: a change
on pairs is just a pair of changes; all other change structure de�nitions distribute componentwise
the same way, and their correctness reduce to the correctness on components.

Change structures on n-ary products or records present no additional di�culty.

De�nition 13.3.3 (Change structure for A × B)
Given change structures Â and B̂ we de�ne a change structure Â × B̂ on product A × B.

(a) The change set is de�ned as: ∆(A × B) = ∆A × ∆B.

(b) Validity is de�ned as

(da, db) B (a1, b1) ↪→ (a2, b2) : A × B =
(da B a1 ↪→ a2 : A) and (db B b1 ↪→ b2 : B).

In other words, validity distributes componentwise: a product change is valid if each compo-
nent is valid.

(c) We de�ne change update by

(a1, b1) ⊕ (da, db) = (a1 ⊕ da, b1 ⊕ db).

(d) We de�ne di�erence by

(a2, b2) 	 (a1, b1) = (a2 	 a1, b2 	 b1).

(e) We de�ne 0 to distribute componentwise:

0a,b = (0a, 0b).

(f) We de�ne change composition to distribute componentwise:

(da1, db1) } (da2, db2) = (da1 } da2, db1 } db2). �

Lemma 13.3.4
De�nition 13.3.3 de�nes a correct change structure Â × B̂. �

Proof. Since all these proofs are similar and spelling out their details does not make them clearer,
we only give the �rst such proof in full.

• ⊕ agrees with validity on A × B because ⊕ agrees with validity on both A and B. For this
property we give a full proof.
For each p1, p2 : A × B and dp B p1 ↪→ p2 : A × B, we must show that p1 ⊕ dp = p2.
Instead of quantifying over pairs p : A × B, we can quantify equivalently over components
a : A, b : B. Hence, consider a1, a2 : A, b1, b2 : B, and changes da, db that are valid, that is,
da B a1 ↪→ a2 : A and db B b1 ↪→ b2 : B: We must show that

(a1, b1) ⊕ (da, db) = (a2, b2).

That follows from a1 ⊕ da = a2 (which follows from da B a1 ↪→ a2 : A) and b1 ⊕ db = b2
(which follows from db B b1 ↪→ b2 : B).
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• 	 produces valid changes on A × B because 	 produces valid changes on both A and B. We
omit a full proof; the key step reduces the thesis

(a2, b2) 	 (a1, b1) B (a1, b1) ↪→ (a2, b2) : A × B

to a2 	 a1 B a1 ↪→ a2 : A and b2 	 b1 B b1 ↪→ b2 : B (where free variables range on suitable
domains).

• 0a,b is correct, that is (0a, 0b) B (a, b) ↪→ (a, b) : A×B, because 0 is correct on each component.

• Change composition is correct on A × B, that is

(da1 } da2, db1 } db2) B (a1, b1) ↪→ (a3, b3) : A × B

whenever (da1, db1) B (a1, b1) ↪→ (a2, b2) : A × B and (da2, db2) B (a2, b2) ↪→ (a3, b3) : A × B,
in essence because change composition is correct on both A and B. We omit details. �

13.4 Change structures for types and contexts
As promised, given change structures for base types we can provide change structures for all types:

Plugin Requirement 13.4.1 (Change structures for base types)
For each base type ι we must have a change structure ι̂ de�ned on base set n ι o, based on the basic
change structures de�ned earlier. �

De�nition 13.4.2 (Change structure for types)
For each type τ we de�ne a change structure τ̂ on base set nτ o.

ι̂ = . . .�σ → τ = σ̂ → τ̂

Lemma 13.4.3
Change sets and validity, as de�ned in De�nition 13.4.2, give rise to the same basic change structures
as the ones de�ned earlier in De�nition 12.1.15, and to the change operations described in Fig. 13.1a.�

Proof. This can be veri�ed by induction on types. For each case, it is su�cient to compare de�ni-
tions. �

Lemma 13.4.4 (⊕ agrees with validity)
If dv B v1 ↪→ v2 : τ then v1 ⊕ dv = v2. �

Proof. Because τ̂ is a change structure and in change structures ⊕ agrees with validity. �

As shortly proved in Sec. 12.2, since ⊕ agrees with validity (Lemma 13.4.4) and D n – o is correct
(Theorem 12.2.2) we get Corollary 13.4.5:

Corollary 13.4.5 (D n –o is correct, corollary)
If Γ ` t : τ and dρ B ρ1 ↪→ ρ2 : Γ then n t o ρ1 ⊕ nD n t o o dρ = n t o ρ2. �
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We can also de�ne a change structure for environments. Recall that change structures for
products de�ne their operations to act on each component. Each change structure operation for
environments acts “variable-wise”. Recall that a typing context Γ is a list of variable assignment
x : τ . For each such entry, environments ρ and environment changes dρ contain a base entry x = v
where v : nτ o, and possibly a change dx = dv where dv : n∆τ o.

De�nition 13.4.6 (Change structure for environments)
To each context Γ we associate a change structure Γ̂, that extends the basic change structure from
De�nition 12.1.25. Operations are de�ned as shown in Fig. 13.1b. �

Base values v ′ in environment changes are redundant with base values v in base environments,
because for valid changes v = v ′. So when consuming an environment change, we choose arbitrarily
to use v instead of v ′. Alternatively, we could also use v ′ and get the same results for valid inputs.
When producing an environment change, they are created to ensure validity of the resulting
environment change.

Lemma 13.4.7
De�nition 13.4.6 de�nes a correct change structure Γ̂ for each context Γ. �

Proof. All proofs are by structural induction on contexts. Most details are analogous to the ones for
products and add no details, so we refer to our mechanization for most proofs.

However we show by induction that ⊕ agrees with validity. For the empty context there’s
a single environment � : n ε o, so ⊕ returns the correct environment �. For the inductive case
Γ′, x : τ , inversion on the validity judgment reduces our hypothesis to dv B v1 ↪→ v2 : τ and
dρ B ρ1 ↪→ ρ2 : Γ, and our thesis to (ρ1, x = v1) ⊕ (dρ, x = v1, dx = dv) = (ρ2, x = v2), where v1
appears both in the base environment and the environment change. The thesis follows because ⊕
agrees with validity on both Γ and τ . �

We summarize de�nitions on types in Fig. 13.1.
Finally, we can lift change operators from the semantic level to the syntactic level so that their

meaning is coherent.

De�nition 13.4.8 (Term-level change operators)
We de�ne type-indexed families of change operators at the term level with the following signatures:

⊕τ : τ → ∆τ → τ
	τ : τ → τ → ∆τ
0τ ,– : τ → ∆τ
}τ : ∆τ → ∆τ → ∆τ

and de�nitions:

tf 1 ⊕σ→τ dtf = λx → tf 1 x ⊕ dtf x 0x
tf 2 	σ→τ tf 1 = λx dx → tf 2 (x ⊕ dx) 	 tf 1 x
0σ→τ , tf = tf 	σ→τ tf
dtf 1 }σ→τ dtf 2 = λx dx → dtf 1 x 0x } dtf 2 x dx
tf 1 ⊕ι dtf = . . .
tf 2 	ι tf 1 = . . .
0ι, tf = . . .
dtf 1 }ι dtf 2 = . . .
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Lemma 13.4.9 (Term-level change operators agree with change structures)
The following equations hold for all types τ , contexts Γ well-typed terms Γ ` t1, t2 : τ , ∆Γ `
dt, dt1, dt2 : ∆τ and environments ρ : n Γ o dρ : n∆Γ o such that all expressions are de�ned.

n t1 ⊕τ dt o dρ = n t1 o dρ ⊕ n dt o dρ
n t2 	τ t1 o ρ = n t2 o ρ ⊕ n t1 o ρ�
0τ , t

�
ρ = 0n t o ρ

n dt1 }τ dt2 o dρ = n dt1 o dρ } n dt2 o dρ

Proof. By induction on types and simplifying both sides of the equalities. The proofs for ⊕ and 	
must be done by simultaneous induction. �

At the time of writing, we have not mechanized the proof for }.
To de�ne the lifting and prove it coherent on base types, we must add a further plugin require-

ment.
Plugin Requirement 13.4.10 (Term-level change operators for base types)
For each base type ι we de�ne change operators as required by De�nition 13.4.8 and satisfying
requirements for Lemma 13.4.9. �

13.5 Development history
The proof presented in this and the previous chapter is an signi�cant evolution of the original one
by Cai et al. [2014]. While this formalization and the mechanization are both original with this
thesis, some ideas were suggested by other (currently unpublished) developments by Yufei Cai and
by Yann Régis-Gianas. Yufei Cai gives a simpler pen-and-paper set-theoretic proof by separating
validity, while we noticed separating validity works equally well in a mechanized type theory and
simpli�es the mechanization. The �rst to use a two-sided validity relation was Yann Régis-Gianas,
but using a big-step operational semantics, while we were collaborating on an ILC correctness proof
for untyped λ-calculus (as in Appendix C). I gave the �rst complete and mechanized ILC correctness
proof using two-sided validity, again for a simply-typed λ-calculus with a denotational semantics.
Based on two-sided validity, I also reconstructed the rest of the theory of changes.

13.6 Chapter conclusion
In this chapter, we have seen how to de�ne change operators, both on semantic values nad on
terms, and what are their guarantees, via the notion of change structures. We have also de�ned
change structures for groups, function spaces and products. Finally, we have explained and shown
Corollary 13.4.5. We continue in next chapter by discussing how to reason syntactically about
changes, before �nally showing how to de�ne some language plugins.
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⊕τ : nτ → ∆τ → τ o
	τ : nτ → τ → ∆τ o

0– : nτ → ∆τ o
}τ : n∆τ → ∆τ → ∆τ o

f1 ⊕σ→τ df = λv → f1 v ⊕ df v 0v
v1 ⊕ι dv = . . .
f2 	σ→τ f1 = λv dv → f2 (v ⊕ dv) 	 f1 v
v2 	ι v1 = . . .
0v = v 	τ v
dv1 }ι dv2 = . . .
df 1 }σ→τ df 2 = λv dv → df 1 v 0v } df 2 v dv

(a) Change structure operations on types (see De�nition 13.4.2).
⊕Γ : n Γ → ∆Γ → Γ o
	Γ : n Γ → Γ → ∆Γ o

0– : n Γ → ∆Γ o
}Γ : n∆Γ → ∆Γ → ∆Γ o

� ⊕ � = �

(ρ, x = v) ⊕ (dρ, x = v ′, dx = dv) = (ρ ⊕ dρ, x = v ⊕ dv)
� 	 � = �

(ρ2, x = v2) 	 (ρ1, x = v1) = (ρ2 	 ρ1, x = v1, dx = v2 	 v1)
0� = �

0ρ,x=v = (0ρ , x = v, dx = 0v)
� } � = �
(dρ1, x = v1, dx = dv1) } (dρ2, x = v2, dx = dv2) =
(dρ1 } dρ2, x = v1, dx = dv1 } dv2)

(b) Change structure operations on environments (see De�nition 13.4.6).

Lemma 13.4.4 (⊕ agrees with validity)
If dv B v1 ↪→ v2 : τ then v1 ⊕ dv = v2. �

Corollary 13.4.5 (D n –o is correct, corollary)
If Γ ` t : τ and dρ B ρ1 ↪→ ρ2 : Γ then n t o ρ1 ⊕ nD n t o o dρ = n t o ρ2. �

Figure 13.1: De�ning change structures.



Chapter 14

Equational reasoning on changes

In this chapter, we formalize equational reasoning directly on terms, rather than on semantic values
(Sec. 14.1), and we discuss when two changes can be considered equivalent (Sec. 14.2). We also show,
as an example, a simple change structure on lists and a derivative of map for it (Example 14.1.1).

To reason on terms, instead of describing the updated value of a term t by using an updated
environment ρ2, we substitute in t each variable xi with expression xi ⊕ dxi , to produce a term that
computes the updated value of t, so that we can say that dx is a change from x to x ⊕ dx, or that
df x dx is a change from f x to (f ⊕ df ) (x ⊕ dx). Lots of the work in this chapter is needed to
modify de�nitions, and go from using an updated environment to using substitution in this fashion.

To compare for equivalence terms that use changes, we can’t use denotational equivalence, but
must restrict to consider valid changes.

Comparing changes is trickier: most often we are not interested in whether two changes produce
the same value, but whether two changes have the same source and destination. Hence, if two
changes share source and destination we say they are equivalent. As we show in this chapter,
operations that preserve validity also respect change equivalence, because for all those operations
the source and destination of any output changes only depend on source and destination of input
changes. Among the same source and destination there often are multiple changes, and the di�erence
among them can a�ect how long a derivative takes, but not whether the result is correct.

We also show that change equivalence is a particular form of logical relation, a logical partial
equivalence relation (PER). PERs are well-known to semanticists, and often used to study sets with
invalid elements together with the appropriate equivalence on these sets.

The rest of the chapter expands on the details, even if they are not especially surprising.

14.1 Reasoning on changes syntactically
To de�ne derivatives of primitives, we will often discuss validity of changes directly on programs,
for instance saying that dx is a valid change from x to x ⊕ dx, or that f x ⊕ df x dx is equivalent to
f (x ⊕ dx) if all changes in scope are valid.

In this section we formalize these notions. We have not mechanized proofs involving substitu-
tions, but we include them here, even though they are not especially interesting.

But �rst, we exemplify informally these notions.

Example 14.1.1 (Derivingmap on lists)
Let’s consider again the example from Sec. 11.3.3, in particular dmap. Recall that a list change
dxs is valid for source xs if they have the same length and each element change is valid for its

109



110 Chapter 14. Equational reasoning on changes

corresponding element.

map : (a→ b) → List a→ List b
map f Nil = Nil
map f (Cons x xs) = Cons (f x) (map f xs)
dmap : (a→ b) → ∆(a→ b) → List a→ ∆List a→ ∆List b

-- A valid list change has the same length as the base list:
dmap f df Nil Nil = Nil
dmap f df (Cons x xs) (Cons dx dxs) =

Cons (df x dx) (dmap f df xs dxs)
-- Remaining cases deal with invalid changes, and a dummy
-- result is su�cient.

dmap f df xs dxs = Nil

In our example, one can show that dmap is a correct derivative for map. As a consequence,
terms map (f ⊕ df ) (xs ⊕ dxs) and map f xs ⊕ dmap f df xs dxs are interchangeable in all valid
contexts, that is, contexts that bind df and dxs to valid changes, respectively, for f and xs.

We sketch an informal proof directly on terms.

Proof sketch. We must show that dy = dmap f df xs dxs is a change change from initial output
y1 = map f xs to updated output y2 = map (f ⊕ df ) (xs ⊕ dxs), for valid inputs df and dxs.

We proceed by structural induction on xs and dxs (technically, on a proof of validity of dxs).
Since dxs is valid, those two lists have to be of the same length. If xs and dxs are both empty,
y1 = dy = y2 = Nil so dy is a valid change as required.

For the inductive step, both lists are Cons nodes, so we need to show that output change

dy = dmap f df (Cons x xs) (Cons dx dxs)

is a valid change from
y1 = map f (Cons x xs)

to
y2 = map (f ⊕ df ) (Cons (x ⊕ dx) (xs ⊕ dxs)).

To restate validity we name heads and tails of dy, y1, y2. If we write dy = Cons dh dt, y1 =
Cons h1 t1 and y2 = Cons h2 t2, we need to show that dh is a change from h1 to h2 and dt is a change
from t1 to t2.

Indeed, head change dh = df x dx is a valid change from h1 = f x to h2 = f (x ⊕ dx). And tail
change dt = dmap f df xs dxs is a valid change from t1 = map f xs to t2 = map (f ⊕ df ) (xs ⊕ dxs)
by induction. Hence dy is a valid change from y1 to y2. �

Hopefully this proof is already convincing, but it relies on unde�ned concepts. On a metalevel
function, we could already make this proof formal, but not so on terms yet. In this section, we
de�ne the required concepts.

14.1.1 Denotational equivalence for valid changes
This example uses the notion of denotational equivalence for valid changes. We now proceed to
formalize it. For reference, we recall denotational equivalence of terms, and then introduce its
restriction:
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De�nition A.2.5 (Denotational equivalence)
We say that two terms Γ ` t1 : τ and Γ ` t2 : τ are denotationally equal, and write Γ � t1 � t2 : τ (or
sometimes t1 � t2), if for all environments ρ : n Γ o we have that n t1 o ρ = n t2 o ρ. �

For open terms t1, t2 that depend on changes, denotational equivalence is too restrictive, since it
requires t1 and t2 to also be equal when the changes they depend on are not valid. By restricting
denotational equivalence to valid environment changes, and terms to depend on contexts, we obtain
the following de�nition.
De�nition 14.1.2 (Denotational equivalence for valid changes)
For any context Γ and type τ , we say that two terms ∆Γ ` t1 : τ and ∆Γ ` t2 : τ are denotationally
equal for valid changes and write ∆Γ � t1 �∆ t2 : τ if, for all valid environment changes dρ B ρ1 ↪→
ρ2 : Γ we have that t1 and t2 evaluate in environment dρ to the same value, that is, n t1 o dρ =
n t2 o dρ. �

Example 14.1.3
Terms f x ⊕ df x dx and f (x ⊕ dx) are denotationally equal for valid changes (for any types σ ,τ ):
∆(f : σ → τ , x : σ ) � f x ⊕ df x dx �∆ f (x ⊕ dx) : τ . �

Example 14.1.4
One of our claims in Example 14.1.1 can now be written as

∆Γ � map (f ⊕ df ) (xs ⊕ dxs) �∆ map f xs ⊕ dmap f df xs dxs : List b

for a suitable context Γ = f : List σ → List τ , xs : List σ ,map : (σ → τ ) → List σ → List τ (and
for any types σ ,τ ). �

Arguably, the need for a special equivalence is a defect in our semantics of change programs; it
might be more preferable to make the type of changes abstract throughout the program (except for
derivatives of primitives, which must inspect derivatives), but this is not immediate, especially in a
module system like Haskell. Other possible alternatives are discussed in Sec. 15.4.

14.1.2 Syntactic validity
Next, we de�ne syntactic validity, that is, when a change term dt is a (valid) change from source
term t1 to destination t2. Intuitively, dt is valid from t1 to t2 if dt, t1 and t2, evaluated all against the
same valid environment change dρ, produce a valid change, its source and destination. Formally:
De�nition 14.1.5 (Syntactic validity)
We say that term ∆Γ ` dt : ∆τ is a (syntactic) change from ∆Γ ` t1 : τ to ∆Γ ` t2 : τ , and write
Γ |= dt I t1 ↪→ t2 : τ , if

∀dρ B ρ1 ↪→ ρ2 : Γ. n dt o dρ B n t1 o dρ ↪→ n t2 o dρ : τ . �

Notation 14.1.6
We often simply say that dt is a change from t1 to t2, leaving everything else implicit when not
important. �

Using syntactic validity, we can show for instance that dx is a change from x to x ⊕ dx, that
df x dx is a change from f x to (f ⊕df ) (x⊕dx); both examples follow from a general statement about
D n – o (Theorem 14.1.9). Our earlier informal proof of the correctness of dmap (Example 14.1.1)
can also be justi�ed in terms of syntactic validity.

Just like (semantic) ⊕ agrees with validity, term-level (or syntactic) ⊕ agrees with syntactic
validity, up to denotational equivalence for valid changes.
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Lemma 14.1.7 (Term-level ⊕ agrees with syntactic validity)
If dt is a change from t1 to t2 (Γ |= dt I t1 ↪→ t2 : τ ) then t1 ⊕ dt and t2 are denotationally equal for
valid changes (∆Γ � t1 ⊕ dt �∆ t2 : τ ). �

Proof. Follows because term-level ⊕ agrees with semantic ⊕ (Lemma 13.4.9) and ⊕ agrees with
validity. In more detail: �x an arbitrary valid environment change dρ B ρ1 ↪→ ρ2 : Γ. First, we have
n dt o dρ B n t1 o dρ ↪→ n t2 o dρ : τ because of syntactic validity. Then we conclude with this
calculation:

n t1 ⊕ dt o dρ
= { term-level ⊕ agrees with ⊕ (Lemma 13.4.9) }

n t1 o dρ ⊕ n dt o dρ
= { ⊕ agrees with validity }

n t2 o dρ

�

Beware that the de�nition of Γ |= dt I t1 ↪→ t2 : τ evaluates all terms against change
environment dρ, containing separately base values and changes. In contrast, if we use validity in
the change structure for n Γ o→ nτ o, we evaluate di�erent terms against di�erent environments.
That is why we have that dx is a change from x to x ⊕ dx (where x ⊕ dx is evaluated in environment
dρ), while n dx o is a valid change from n x o to n x o (where the destination n x o gets applied to
environment ρ2).

Is syntactic validity trivial? Without needing syntactic validity, based on earlier chapters one
can show that dv is a valid change from v to v ⊕ dv, or that df v dv is a valid change from f v
to (f ⊕ df ) (v ⊕ dv), or further examples. But that’s all about values. In this section we are just
translating these notions to the level of terms, and formalize them.

Our semantics is arguably (intuitively) a trivial one, similar to a metainterpreter interpreting
object-language functions in terms of metalanguage functions: our semantics simply embeds an
object-level λ-calculus into a meta-level and more expressive λ-calculus, mapping for instance
λf x → f x (an AST) into λf v → f v (syntax for a metalevel function). Hence, proofs in this
section about syntactic validity deal mostly with this translation. We don’t expect the proofs to
give special insights, and we expect most development would keep such issues informal (which is
certainly reasonable).

Nevertheless, we write out the statements to help readers refer to them, and write out (mostly)
full proofs to help ourselves (and readers) verify them. Proofs are mostly standard but with a few
twists, since we must often consider and relate three computations: the computation on initial
values and the ones on the change and on updated values.

We’re also paying a proof debt. Had we used substitution and small step semantics, we’d have
directly simple statements on terms, instead of trickier ones involving terms and environments. We
produce those statements now.

Di�erentiation and syntactic validity

We can also show that D n t o produces a syntactically valid change from t, but we need to specify
its destination. In general, D n t o is not a change from t to t. The destination must evaluate to the
updated value of t; to produce a term that evaluates to the right value, we use substitution. If the
only free variable in t is x, then D n t o is a syntactic change from t to t [x := x ⊕ dx ]. To repeat the
same for all variables in context Γ, we use the following notation.
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Notation 14.1.8
We write t [Γ := Γ ⊕ ∆Γ ] to mean t [x1 := x1 ⊕ dx1, x2 := x2 ⊕ dx2, . . . , xn := xn ⊕ dxn ]. �

Theorem 14.1.9 (D n –o is correct, syntactically)
For any well-typed term Γ ` t : τ , term D n t o is a syntactic change from t to t [Γ := Γ ⊕ ∆Γ ]. �

We present the following straightforward (if tedious) proof (formal but not mechanized).

Proof. Let t2 = t [Γ := Γ ⊕ ∆Γ ]. Take any dρ B ρ1 ↪→ ρ2 : Γ. We must show that nD n t o o dρ B
n t o dρ ↪→ n t2 o dρ : τ .

Because dρ extend ρ1 and t only needs entries in ρ1, we can show that n t o dρ = n t o ρ1, so
our thesis becomes nD n t o o dρ B n t o ρ1 ↪→ n t2 o dρ : τ .

Because D n – o is correct (Theorem 12.2.2) we know that nD n t o o dρ B n t o ρ1 ↪→ n t o ρ2 : τ ;
that’s almost our thesis, so we must only show that n t2 o dρ = n t o ρ2. Since ⊕ agrees with validity
and dρ is valid, we have that ρ2 = ρ1 ⊕ dρ, so our thesis is now the following equation, which we
leave to Lemma 14.1.10:

n t o [Γ := Γ ⊕ ∆Γ ] dρ = n t o (ρ1 ⊕ dρ). �

Here’s the technical lemma to complete the proof.

Lemma 14.1.10
For any Γ ` t : τ , and dρ B ρ1 ↪→ ρ2 : Γ we have

n t o [Γ := Γ ⊕ ∆Γ ] dρ = n t o (ρ1 ⊕ dρ). �

Proof. This follows from the structure of valid environment changes, because term-level ⊕ (used on
the left-hand side) agrees with value-level ⊕ (used on the right-hand side) by Lemma 13.4.9, and
because of the substitution lemma.

More formally, we can show the thesis by induction over environments: for empty environments,
the equations reduces to n t o � = n t o �. For the case of Γ, x : σ (where x < Γ), the thesis can be
rewritten as

n (t [Γ := Γ ⊕ ∆Γ ]) [x := x ⊕ dx ] o (dρ, x = v1, dx = dv) = n t o (ρ1 ⊕ dρ, x = v1 ⊕ dv).

We prove it via the following calculation.

n (t [Γ := Γ ⊕ ∆Γ ]) [x := x ⊕ dx ] o (dρ, x = v1, dx = dv)
= { Substitution lemma on x. }

n (t [Γ := Γ ⊕ ∆Γ ]) o (dρ, x = (n x ⊕ dx o (dρ, x = v1, dx = dv)), dx = dv)
= { Term-level ⊕ agrees with ⊕ (Lemma 13.4.9). }

{ Then simplify n x o and n dx o. }
n (t [Γ := Γ ⊕ ∆Γ ]) o (dρ, x = v1 ⊕ dv, dx = dv)

= { t [Γ := Γ ⊕ ∆Γ ] does not mention dx. }
{ So we can modify the environment entry for dx. }
{ This makes the environment into a valid environment change. }

n (t [Γ := Γ ⊕ ∆Γ ]) o (dρ, x = v1 ⊕ dv, dx = 0v1⊕dv)
= { By applying the induction hypothesis and simplifying 0 away. }

n t o (ρ1 ⊕ dρ, x = v1 ⊕ dv)

�
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14.2 Change equivalence
To optimize programs manipulate changes, we often want to replace a change-producing term by
another one, while preserving the overall program meaning. Hence, we de�ne an equivalence on
valid changes that is preserved by change operations, that is (in spirit) a congruence. We call this
relation (change) equivalence, and refrain from using other equivalences on changes.

Earlier (say, in Sec. 15.3) we have sometimes required that changes be equal, but that’s often too
restrictive.

Change equivalence is de�ned in terms of validity, to ensure that validity-preserving operations
preserve change equivalence: If two changes dv1 and dv2 are equivalent, one can be substituted for
the other in a validity-preserving context. We can de�ne this once for all change structures, hence
in particular for values and environments.
De�nition 14.2.1 (Change equivalence)
Given a change structure V̂ , changes dva , dvb : ∆V are equivalent relative to source v1 : V (written
dva =∆ dvb B v1 ↪→ v2 : V ) if and only if there exists v2 such that both dva and dvb are valid from
v1 to v2 (that is dva B v1 ↪→ v2 : V , dvb B v1 ↪→ v2 : V ). �

Notation 14.2.2
When not ambiguous we often abbreviate dva =∆ dvb B v1 ↪→ v2 : V as dva =v1∆ dvb or dva =∆ dvb .

Two changes are often equivalent relative to a source but not others. Hence dva =∆ dvb is
always an abbreviation for change equivalence for a speci�c source. �

Example 14.2.3
For instance, we later use a change structure for integers using both replacement changes and
di�erences (Example 12.1.6). In this structure, change 0 is nil for all numbers, while change !5 (“bang
5”) replaces any number with 5. Hence, changes 0 and !5 are equivalent only relative to source 5,
and we write 0 =5∆!5. �

By applying de�nitions, one can verify that change equivalence relative to a source v is a
symmetric and transitive relation on ∆V . However, it is not an equivalence relation on ∆V , because
it is only re�exive on changes valid for source v. Using the set-theoretic concept of subset we can
then state the following lemma (whose proof we omit as it is brief):
Lemma 14.2.4 (=∆ is an equivalence on valid changes)
For each set V and source v ∈ V , change equivalence relative to source v is an equivalence relation
over the set of changes

{dv ∈ ∆V | dv is valid with source v}. �

We elaborate on this peculiar sort of equivalence in Sec. 14.2.3.

14.2.1 Preserving change equivalence
Change equivalence relative to a source v is respected, in an appropriate sense, by all validity-
preserving expression contexts that accept changes with source v. To explain what this means we
study an example lemma: we show that because valid function changes preserve validity, they also
respect change equivalence. At �rst, we use “(expression) context” informally to refer to expression
contexts in the metalanguage. Later, we’ll extend our discussion to actual expression contexts in
the object language.
Lemma 14.2.5 (Valid function changes respect change equivalence)
Any valid function change

df B f1 ↪→ f2 : A→ B
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respects change equivalence: if dva =∆ dvb B v1 ↪→ v2 : A then df v1 dva =∆ df v1 dvb B f1 v1 ↪→
f2 v2 : B. We also say that (expression) context df v1 – respects change equivalence. �

Proof. The thesis means that df v1 dva B f1 v1 ↪→ f2 v2 : B and df v1 dvb B f1 v1 ↪→ f2 v2 : B. Both
equivalences follow in one step from validity of df , dva and dvb . �

This lemma holds because the source and destination of df v1 dv don’t depend on dv, only
on its source and destination. Source and destination are shared by equivalent changes. Hence,
validity-preserving functions map equivalent changes to equivalent changes.

In general, all operations that preserve validity also respect change equivalence, because for all
those operations, the source and destination of any output changes, and the resulting value, only
depend on source and destination of input changes.

However, Lemma 14.2.5 does not mean that df v1 dva = df v1 dvb , because there can be
multiple changes with the same source and destination. For instance, say that dva is a list change
that removes an element and readds it, and dvb is a list change that describes no modi�cation. They
are both nil changes, but a function change might handle them di�erently.

Moreover, we only proved that context df v1 – respects change equivalence relative to source
v1. If value v3 di�ers from v1, df v3 dva and df v3 dvb need not be equivalent. Hence, we say
that context df v1 accepts changes with source v1. More in general, a context accepts changes with
source v1 if it preserves validity for changes with source v1; we can say informally that all such
contexts also respect change equivalence.

Another example: context v1⊕– also accepts changes with source v1. Since this context produces
a base value and not a change, it maps equivalent changes to equal results:
Lemma 14.2.6 (⊕ respects change equivalence)
If dva =∆ dvb B v1 ↪→ v2 : V then v1 ⊕ – respects the equivalence between dva and dvb , that is,
v1 ⊕ dva = v1 ⊕ dvb . �

Proof. v1 ⊕ dva = v2 = v1 ⊕ dvb . �

There are more contexts that preserve equivalence. As discussed, function changes preserve con-
texts, and D n – o produces functions changes, so D n t o preserves equivalence on its environment,
and on any of its free variables.
Lemma 14.2.7 (D n –o preserves change equivalence)
For any term Γ ` t : τ , D n t o preserves change equivalence of environments: for all dρa =∆ dρb B
ρ1 ↪→ ρ2 : Γ we have nD n t o o dρa =∆ nD n t o o dρb B n t o ρ1 ↪→ n t o ρ2 : Γ → τ . �

Proof. To verify this, just apply correctness of di�erentiation to both changes dρa and dρb . �

To show more formally in what sense change equivalence is a congruence, we �rst lift change
equivalence to terms (De�nition 14.2.9), similarly to syntactic change validity in Sec. 14.1.2. To do
so, we �rst need a notation for one-sided or source-only validity:
Notation 14.2.8 (One-sided validity)
We write dv B v1 : V to mean there exists v2 such that dv B v1 ↪→ v2 : V . We will reuse
existing conventions and write dv B v1 : τ instead of dv B v1 : nτ o and dρ B ρ1 : Γ instead of
dρ B ρ1 : n Γ o. �

De�nition 14.2.9 (Syntactic change equivalence)
Two change terms ∆Γ ` dta : ∆τ and ∆Γ ` dtb : ∆τ are change equivalent, relative to source
Γ ` t : τ , if for all valid environment changes dρ B ρ1 ↪→ ρ2 : Γ we have that

n dta o dρ =∆ n dtb o dρ B n t o ρ1 : τ .

We write then Γ |= dta =∆ dtb I t : τ or dta =t∆ dtb , or simply dta =∆ dtb . �
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Saying that dta and dtb are equivalent relative to t does not specify the destination of dta and dtb ,
only their source. The only reason is to simplify the statement and proof of Theorem 14.2.10.

If two change terms are change equivalent with respect to the right source, we can replace one
for the other in an expression context to optimize a program, as long as the expression context is
validity-preserving and accepts the change.

In particular, substituting into D n t o preserves syntactic change equivalence, according to the
following theorem (for which we have only a pen-and-paper formal proof).

Theorem 14.2.10 (D n –o preserves syntactic change equivalence)
For any equivalent changes Γ |= s I dsa =∆ dsb : σ , and for any term t typed as Γ, x : σ ` t : τ , we
can produce equivalent results by substituting into D n t o either s and dsa or s and dsb :

Γ |= D n t o [x := s, dx := dsa ] =∆ D n t o [x := s, dx := dsb ] I t [x := s ] : τ . �

Proof sketch. The thesis holds because D n – o preserves change equivalence Lemma 14.2.7. A formal
proof follows through routine (and tedious) manipulations of bindings. In essence, we can extend a
change environment dρ for context Γ to equivalent environment changes for context Γ, x : σ with
the values of dsa and dsb . The tedious calculations follow. �

Proof. Assume dρ B ρ1 ↪→ ρ2 : Γ. Because dsa and dsb are change-equivalent we have

n dsa o dρ =∆ n dsb o dρ B n s o ρ1 : σ .

Moreover, n s o ρ1 = n s o dρ because dρ extends ρ1. We’ll use this equality without explicit
mention.

Hence, we can construct change-equivalent environments for evaluating D n t o, by combining
dρ and the values of respectively dsa and dsb :

(dρ, x = n s o dρ, dx = n dsa o dρ) =∆

(dρ, x = n s o dρ, dx = n dsb o dρ)
B (ρ1, x = n s o ρ1) : (Γ, x : σ ). (14.1)

This environment change equivalence is respected by D n t o, hence:

nD n t o o (dρ, x = n s o dρ, dx = n dsa o dρ) =∆

nD n t o o (dρ, x = n s o dρ, dx = n dsb o dρ)
B n t o (ρ1, x = n s o ρ1) : Γ → τ . (14.2)

We want to deduce the thesis by applying to this statement the substitution lemma for denotational
semantics: n t o (ρ, x = n s o ρ) = n t [x := s ] o ρ.

To apply the substitution lemma to the substitution of dx, we must adjust Eq. (14.2) using
soundness of weakening. We get:

nD n t o o (dρ, x = n s o dρ, dx = n dsa o (dρ, x = n s o dρ)) =∆

nD n t o o (dρ, x = n s o dρ, dx = n dsb o (dρ, x = n s o dρ))
B n t o (ρ1, x = n s o ρ1) : Γ → τ . (14.3)
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This equation can now be rewritten (by applying the substitution lemma to the substitutions of
dx and x) to the following one:

n (D n t o [dx := dsa ] [x := s ]) o dρ =∆

n (D n t o [dx := dsb ] [x := s ]) o dρ
B n t [x := s ] o ρ1 : Γ → τ . (14.4)

Since x is not in scope in s, dsa , dsb , we can permute substitutions to conclude that:

Γ |= D n t o [x := s, dx := dsa ] =∆ D n t o [x := s, dx := dsb ] I t [x := s ] : τ

as required. �

In this theorem, if x appears once in t, then dx appears once in D n t o (this follows by induction on
t), hence D n t o [x := s, dx := –] produces a one-hole expression context.

Further validity-preserving contexts There are further operations that preserve validity. To
represent terms with “holes” where other terms can be inserted, we can de�ne one-level contexts F ,
and contexts E, as is commonly done:

F ::= [ ] t dt | ds t [ ] | λx dx → [ ] | t ⊕ [ ] | dt1 } [ ] | [ ] } dt2
E ::= [ ] | F [E ]

If dt1 =∆ dt2 B t1 ↪→ t2 : τ and our context E accepts changes from t1, then F [dt1 ] and F [dt2 ] are
change equivalent. It is easy to prove such a lemma for each possible shape of one-level context F ,
both on values (like Lemmas 14.2.5 and 14.2.6) and on terms. We have been unable to state a more
general theorem because it’s not clear how to formalize the notion of a context accepting a change
in general: the syntax of a context does not always hint at the validity proofs embedded.

Cai et al. [2014] solve this problem for metalevel contexts by typing them with dependent
types, but as discussed the overall proof is more awkward. Alternatively, it appears that the use of
dependent types in Chapter 18 also ensures that change equivalence is a congruence (though at
present this is still a conjecture), without overly complicating correctness proofs. However, it is not
clear whether such a type system can be expressive enough without requiring additional coercions.
Consider a change dv1 from v1 to v1 ⊕ dv1, a value v2 which is known to be (propositionally) equal
to v1 ⊕ dv1, and a change dv2 from v2 to v3. Then, term dv1 } dv2 is not type correct (for instance
in Agda): the typechecker will complain that dv1 has destination v1 ⊕ dv1 while dv2 has source v2.
When working in Agda, to solve this problem we can explicitly coerce terms through propositional
equalities, and can use Agda to prove such equalities in the �rst place. We leave the design of a
su�ciently expressive object language where change equivalence is a congruence for future work.

14.2.2 Sketching an alternative syntax
If we exclude composition, we can sketch an alternative syntax which helps construct a congruence
on changes. The idea is to manipulate, instead of changes alone, pairs of sources v ∈ V and valid
changes {dv | dv B v : V }.

t ::= src dt | dst dt | x | t t | λx → t
dt ::= dt dt | src dt | λdx → dt | dx

Adapting di�erentiation to this syntax is easy:
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D n x o = dx
D n s t o = D n s o D n t o
D n λx → t o = D n λdx → dt o

Derivatives of primitives only need to use dst dt instead of t ⊕ dt and src dt instead of t whenever
dt is a change for t.

With this syntax, we can de�ne change expression contexts, which can be �lled in by change
expressions:

E ::= src dE | dst dE | E t | t E | λx → E
dE ::= dt dE | dE dt | λdx → dE | [ ]

We conjecture change equivalence is a congruence with respect to contexts dE, and that contexts
E map change-equivalent changes to results that are denotationally equivalent for valid changes. We
leave a proof to future work, but we expect it to be straightforward. It also appears straightforward
to provide an isomorphism between this syntax and the standard one.

However, extending such contexts with composition does not appear trivial: contexts such as
dt } dE or dE } dt only respect validity when the changes sources and destinations align correctly.

We make no further use of this alternative syntax in this work.

14.2.3 Change equivalence is a PER
Readers with relevant experience will recognize that change equivalence is a partial equivalence
relation (PER) [Mitchell, 1996, Ch. 5]. It is standard to use PERs to identify valid elements in a
model [Harper, 1992]. In this section, we state the connection, showing that change equivalence is
not an ad-hoc construction, so that mathematical constructions using PERs can be adapted to use
change equivalence.

We recall the de�nition of a PER:
De�nition 14.2.11 (Partial equivalence relation (PER))
A relation R ⊆ S×S is a partial equivalence relation if it is symmetric (if aRb then bRa) and transitive
(if aRb and bRc then aRc). �

Elements related to another are also related to themselves: If aRb then aRa (by transitivity: aRb,
bRa, hence aRa). So a PER on S identi�es a subset of valid elements of S. Since PERs are equivalence
relations on that subset, they also induce a (partial) partition of elements of S into equivalence
classes of change-equivalent elements.

Lemma 14.2.12 (=∆ is a PER)
Change equivalence relative to a source a : A is a PER on set ∆A. �

Proof. A restatement of Lemma 14.2.4. �

Typically, one studies logical PERs, which are logical relations and PERs at the same time [Mitchell,
1996, Ch. 8]. In particular, with a logical PER two functions are related if they map related inputs to
related outputs. This helps showing that a PERs is a congruence. Luckily, our PER is equivalent to
such a de�nition.
Lemma 14.2.13 (Alternative de�nition for =∆)
Change equivalence is equivalent to the following logical relation:

dva =∆ dvb B v1 ↪→ v2 : ι =def
dva B v1 ↪→ v2 : ι and dva B v1 ↪→ v2 : ι
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df a =∆ df b B f1 ↪→ f2 : σ → τ =def
∀dva =∆ dvb B v1 ↪→ v2 : σ .
df a v1 dva =∆ df b v2 dvb B f1 v1 ↪→ f2 v2 : τ

Proof. By induction on types. �

14.3 Chapter conclusion
In this chapter, we have put on a more solid foundation forms of reasoning about changes on terms,
and de�ned an appropriate equivalence on changes.
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Chapter 15

Extensions and theoretical
discussion

In this chapter we collect discussion of a few additional topics related to ILC that do not su�ce
for standalone chapters. We show how to di�erentiation general recursion Sec. 15.1, we exhibit
a function change that is not valid for any function (Sec. 15.2), we contrast our representation of
function changes with pointwise function changes (Sec. 15.3), and we compare our formalization
with the one presented in [Cai et al., 2014] (Sec. 15.4).

15.1 General recursion
This section discusses informally how to di�erentiate terms using general recursion and what is the
behavior of the resulting terms.

15.1.1 Di�erentiating general recursion
Earlier we gave a rule for deriving (non-recursive) let:

D n let x = t1 in t2 o = let x = t1
dx = D n t1 o

in D n t2 o
It turns out that we can use the same rule also for recursive let-bindings, which we write here (and
only here) letrec for distinction:

D n letrec x = t1 in t2 o = letrec x = t1
dx = D n t1 o

in D n t2 o
Example 15.1.1
In Example 14.1.1 we presented a derivative dmap for map. By using rules for di�erentiating
recursive functions, we obtain dmap as presented from map:

dmap f df Nil Nil = Nil
dmap f df (Cons x xs) (Cons dx dxs) =
Cons (df x dx) (dmap f df xs dxs)
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However, derivative dmap is not asymptotically faster than map. Even when we consider less
trivial change structures, derivatives of recursive functions produced using this rule are often not
asymptotically faster. Deriving letrec x = t1 in t2 can still be useful if D n t1 o and/or D n t2 o
is faster than its base term, but during our work we focus mostly on using structural recursion.
Alternatively, in Chapter 11 and Sec. 11.2 we have shown how to incrementalize functions (including
recursive ones) using equational reasoning.

In general, when we invoke dmap on a change dxs from xs1 to xs2, it is important that xs1 and xs2
are similar enough that enough computation can be reused. Say that xs1 = Cons 2 (Cons 3 (Cons 4 Nil))
and xs2 = Cons 1 (Cons 2 (Cons 3 (Cons 4 Nil))): in this case, a change modifying each element
of xs1, and then replacing Nil by Cons 4 Nil, would be ine�cient to process, and naive incremen-
talization would produce this scenario. In this case, it is clear that a preferable change should
simply insert 1 at the beginning of the list, as illustrated in Sec. 11.3.2 (though we have omitted the
straightforward de�nition of dmap for such a change structure). In approaches like self-adjusting
computation, this is ensured by using memoization. In our approach, instead, we rely on changes
that are nil or small to detect when a derivative can reuse input computation.

The same problem a�ects naive attempts to incrementalize, for instance, a simple factorial
function; we omit details. Because of these issues, we focus on incrementalization of structurally re-
cursive functions, and on incrementalizing generally recursive primitives using equational reasoning.
We return to this issue in Chapter 20.

15.1.2 Justi�cation
Here, we justify informally the rule for di�erentiating recursive functions using �xpoint operators.

Let’s consider STLC extended with a family of standard �xpoint combinators �xτ : (τ → τ ) → τ ,
with �x-reduction de�ned by equation �x f → f (�x f ); we search for a de�nition of D n�x f o.

Using informal equational reasoning, if a correct de�nition of D n�x f o exists, it must satisfy

D n�x f o � �x (D n f o (�x f ))

We can proceed as follows:

D n�x f o
= { imposing that D n – o respects �x-reduction here }

D n f (�x f ) o
= { using rules for D n – o on application }

D n f o (�x f ) D n�x f o

This is a recursive equation in D n�x f o, so we can try to solve it using �x itself:

D n�x f o = �x (λd�xf → D n f o (�x f ) d�xf )

Indeed, this rule gives a correct derivative. Formalizing our reasoning using denotational
semantics would presumably require the use of domain theory. Instead, we prove correct a variant
of �x in Appendix C, but using operational semantics.

15.2 Completely invalid changes
In some change sets, some changes might not be valid relative to any source. In particular, we can
construct examples in ∆(Z→ Z).
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To understand why this is plausible, we recall that as described in Sec. 15.3, df can be decomposed
into a derivative, and a pointwise function change that is independent of da. While pointwise
changes can be de�ned arbitrarily, the behavior of the derivative of f on changes is determined by
the behavior of f .

Example 15.2.1
We search for a function change df : ∆(Z→ Z) such that there exist no f1, f2 : Z→ Z for which
df B f1 ↪→ f2 : Z→ Z. To �nd df , we assume that there are f1, f2 such that df B f1 ↪→ f2 : Z→ Z,
prove a few consequences, and construct df that cannot satisfy them. Alternatively, we could pick
the desired de�nition for df right away, and prove by contradiction that there exist no f1, f2 such
that df B f1 ↪→ f2 : Z→ Z.

Recall that on integers a1⊕da = a1+da, and that da B a1 ↪→ a2 : Zmeans a2 = a1⊕da = a1+da.
So, for any numbers a1, da, a2 such that a1 + da = a2, validity of df implies that

f2 (a1 + da) = f1 a1 + df a1 da.

For any two numbers b1, db such that b1 + db = a1 + da, we have that

f1 a1 + df a1 da = f2 (a1 + da) = f2 (b1 + db) = f1 b1 + df b1 db.

Rearranging terms, we have

df a1 da − df b1 db = f1 b1 − f1 a1,

that is, df a1 da − df b1 db does not depend on da and db.
For concreteness, let us �x a1 = 0, b1 = 1, and a1 + da = b1 + db = s. We have then that

df 0 s − df 1 (s − 1) = f1 1 − f1 0,

Once we set h = f1 1 − f1 0, we have df 0 s − df 1 (s − 1) = h. Because s is just the sum of two
arbitrary numbers, while h only depends on f1, this equation must hold for a �xed h and for all
integers s.

To sum up, we assumed for a given df there exists f1, f2 such that df B f1 ↪→ f2 : Z→ Z, and
concluded that there exists h = f1 1 − f1 0 such that for all s

df 0 s − df 1 (s − 1) = h.

At this point, we can try concrete families of functions df to obtain a contradiction. Substituting
a linear polynomial df a da = c1 · a + c2 · da fails to obtain a contradiction: in fact, we can construct
various f1, f2 such that df B f1 ↪→ f2 : Z → Z. So we try quadratic polynomials: Substituting
df a da = c · da2 succeeds: we have that there is h such that for all integers s

c ·
(
s2 − (s − 1)2

)
= h.

However, c ·
(
s2 − (s − 1)2

)
= 2 · c · s − c which isn’t constant, so there can be no such h. �

15.3 Pointwise function changes
We can also decompose function changes into orthogonal (and possibly easier to understand)
concepts.

Consider two functions f1, f2 : A→ B and two inputs a1, a2 : A. The di�erence between f2 a2
and f1 a1 is due to changes to both the function and its argument. We can compute the whole
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change at once via a function change df as df a1 da. Or we can compute separately the e�ects of
the function change and of the argument change. We can account for changes from f1 a1 to f2 a2
using f ′1 , a derivative of f1: f ′1 a1 da = f1 a2 	 f1 a2 = f1 (a1 ⊕ da) 	 f a1.1

We can account for changes from f1 to f2 using the pointwise di�erence of two functions, ∇f1 =
λ(a : A) → f2 a 	 f1 a; in particular, f2 (a1 ⊕ da) 	 f1 (a1 ⊕ da) = ∇f (a1 ⊕ da). Hence, a function
change simply combines a derivative with a pointwise change using change composition:

df a1 da = f2 a2 	 f1 a1
= (f1 a2 	 f1 a1) } (f2 a2 	 f1 a2)
= f ′1 a1 da } ∇f (a1 ⊕ da)

(15.1)

One can also compute a pointwise change from a function change:

∇ f a = df a 0a

While some might �nd pointwise changes a more natural concept, we �nd it easier to use our
de�nitions of function changes, which combines both pointwise changes and derivatives into a
single concept. Some related works explore the use of pointwise changes; we discuss them in
Sec. 19.2.2.

15.4 Modeling only valid changes
In this section, we contrast brie�y the formalization of ILC in this thesis (for short ILC’17) with the
one we used in our �rst formalization [Cai et al., 2014] (for short ILC’14). We keep the discussion
somewhat informal; we have sketched proofs of our claims and mechanized some, but we omit all
proofs here. We discuss both formalizations using our current notation and terminology, except for
concepts that are not present here.

Both formalizations model function changes semantically, but the two models we present are
di�erent. Overall, ILC’17 uses simpler machinery and seems easier to extend to more general base
languages, and its mechanization of ILC’17 appears simpler and smaller. Instead, ILC’14 studies
additional entities but better behaved entities.

In ILC’17, input and output domains of function changes contain invalid changes, while in
ILC’14 these domains are restricted to valid changes via dependent types; ILC’14 also considers the
denotation of D n t o, whose domains include invalid changes, but such denotations are studied only
indirectly. In both cases, function changes must map valid changes to valid changes. But ILC’14,
application df v1 dv is only well-typed is dv is a change valid from v1, hence we can simply say that
df v1 respects change equivalence. As discussed in Sec. 14.2, in ILC’17 the analogous property has
a trickier statement: we can write df v1 and apply it to arbitrary equivalent changes dv1 =∆ dv2,
even if their source is not v1, but such change equivalences are not preserved.

We can relate the two models by de�ning a logical relation called erasure (similar to the one
described by Cai et al.): an ILC’14 function change df erases to an ILC’17 function change df ′

relative to source f : A → B if, given any change da that erases to da′ relative to source a1 : A,
output change df a1 da erases to df ′ a1 da′ relative to source f a1. For base types, erasure simply
connects corresponding da (with source) with da′ in a manner dependent from the base type (often,
just throwing away any embedded proofs of validity). In all cases, one can show that if and only if

1For simplicity, we use equality on changes, even though equality is too restrictive. Later (in Sec. 14.2) we’ll de�ne an
equivalence relation on changes, called change equivalence and written =∆ , and use it systematically to relate changes in
place of equality. For instance, we’ll write that f ′1 a1 da =∆ f1 (a1 ⊕ da) 	 f1 a1. But for the present discussion, equality will
do.
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dv erases to dv ′ with source v1, then v1 ⊕ dv = v2 ⊕ dv ′ (for suitable variants of ⊕): in other words,
dv and dv ′ share source and destination (technically, ILC’17 changes have no �xed source, so we
say that they are changes from v1 to v2 for some v2).

In ILC’14 there is a di�erent incremental semantics n t o∆ for terms t, but it is still a valid ILC’14
change. One can show that n t o∆ (as de�ned in ILC’14) erases to nD n t o o∆ (as de�ned in ILC’17)
relative to source n t o; in fact, the needed proof is sketched by Cai et al., through in disguise.

It seems clear there is no isomorphism between ILC’14 changes and ILC’17 changes. An ILC’17
function change also accepts invalid changes, and the behavior on those changes can’t be preserved
by an isomorphism. Worse, it seems hard to de�ne a non-isomorphic mapping: to map an ILC’14
change df to an an ILC’17 change erase df , we have to de�ne behavior for (erase df ) a da even
when da is invalid. As long as we work in a constructive setting, we cannot decide whether da is
valid in general, because da can be a function change with in�nite domain.

We can give however a de�nition that does not need to detect such invalid changes: Just extract
source and destination from a function change using valid change 0v , and take di�erence of source
and destination using 	 in the target system.

unerase (σ → τ ) df ′ = let f = λv → df ′ v 0v in (f ⊕ df ′) 	 f
unerase _ dv ′ = . . .
erase (σ → τ ) df = let f = λv → df v 0v in (f ⊕ df ) 	 f
erase _ dv = . . .

We de�ne these function by induction on types (for elements of ∆τ , not arbitrary change structures),
and we overload 	 for ILC’14 and ILC’17. We conjecture that for all types τ and for all ILC’17
changes dv ′ (of the right type), unerase τ dv ′ erases to dv ′, and for all ILC’14 changes dv, dv erases
to erase τ dv ′.

Erasure is a well-behaved logical relation, similar to the ones relating source and destination
language of a compiler and to partial equivalence relations. In particular, it also induces partial
equivalence relations (PER) (see Sec. 14.2.3), both on ILC’14 changes and on ILC’17 changes: two
ILC’14 changes are equivalent if they erase to the same ILC’17 change, and two ILC’17 changes are
equivalent if the same ILC’14 change erases to both. Both relations are partial equivalence relations
(and total on valid changes). Because changes that erase to each other share source and destination,
these induced equivalences coincide again with change equivalence. That both relations are PERs
also means that erasure is a so-called quasi-PER [Krishnaswami and Dreyer, 2013]. Quasi-PERs are
a natural (though not obvious) generalization of PERs for relations among di�erent sets R ⊆ S1 × S2:
such relations cannot be either symmetric or transitive. However, we make no use of additional
properties of quasi-PERs, hence we don’t discuss them in further detail.

15.4.1 One-sided vs two-sided validity

There are also further super�cial di�erences among the two de�nitions. In ILC’14, changes valid
with soure a have dependent type ∆a. This dependent type is indexed by the source but not by the
destination. Dependent function changes with source f : A→ B have type (a : A) → ∆a→ ∆(f a),
relating the behavior of function change df with the behavior of f on original inputs. But this is
half of function validity: to relate the behavior of df with the behavior of df on updated inputs, in
ILC’14 valid function changes have to satisfy an additional equation called preservation of future:2

f1 a1 ⊕ df a1 da = (f1 ⊕ df ) (a1 ⊕ da).

2Name suggested by Yufei Cai.
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This equation appears inelegant, and mechanized proofs were often complicated by the need to
perform rewritings using it. Worse, to show that a function change is valid, we have to use di�erent
approaches to prove it has the correct source and the correct destination.

This di�erence is however super�cial. If we replace f1 ⊕ df with f2 and a1 ⊕ da with a2, this
equation becomes f1 a1 ⊕ df a1 da = f2 a2, a consequence of f2 B df ↪→ – : f1. So one might suspect
that ILC’17 valid function changes also satisfy this equation. This is indeed the case:

Lemma 15.4.1
A valid function change df B f1 ↪→ f2 : A→ B satis�es equation

f1 a1 ⊕ df a1 da = (f1 ⊕ df ) (a1 ⊕ da)

on any valid input da B a1 ↪→ a2 : A→ B. �

Conversely, one can also show that ILC’14 function changes also satisfy two-sided validity as
de�ned in ILC’17. Hence, the only true di�erence between ILC’14 and ILC’17 models is the one we
discussed earlier, namely whether function changes can be applied to invalid inputs or not.

We believe it could be possible to formalize the ILC’14 model using two-sided validity, by
de�ning a dependent type of valid changes: ∆2 (A → B) f1 f2 = (a1 a2 : A) → ∆2 A a1 a2 →
∆2 B (f1 a1) (f2 a2). We provide more details on such a transformation in Chapter 18.

Models restricted to valid changes (like ILC’14) are related to models based on directed graphs
and re�exive graphs, where values are graphs vertexes, changes are edges between change source
and change destination (as hinted earlier). In graph language, validity preservation means that
function changes are graph homomorphisms.

Based on similar insights, Atkey [2015] suggests modeling ILC using re�exive graphs, which
have been used to construct parametric models for System F and extensions, and calls for research
on the relation between ILC and parametricity. As follow-up work, Cai [2017] studies models of
ILC based on directed and re�exive graphs.
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Di�erentiation in practice

In practice, successful incrementalization requires both correctness and performance of the deriva-
tives. Correctness of derivatives is guaranteed by the theoretical development the previous sections,
together with the interface for di�erentiation and proof plugins, whereas performance of derivatives
has to come from careful design and implementation of di�erentiation plugins.

16.1 The role of di�erentiation plugins
Users of our approach need to (1) choose which base types and primitives they need, (2) implement
suitable di�erentiation plugins for these base types and primitives, (3) rewrite (relevant parts of)
their programs in terms of these primitives and (4) arrange for their program to be called on changes
instead of updated inputs.

As discussed in Sec. 10.5, di�erentiation supports abstraction, application and variables, but
since computation on base types is performed by primitives for those types, e�cient derivatives for
primitives are essential for good performance.

To make such derivatives e�cient, change types must also have e�cient implementations, and
allow describing precisely what changed. The e�cient derivative of sum in Chapter 10 is possible
only if bag changes can describe deletions and insertions, and integer changes can describe additive
di�erences.

For many conceivable base types, we do not have to design the di�erentiation plugins from
scratch. Instead, we can reuse the large body of existing research on incrementalization in �rst-order
and domain-speci�c settings. For instance, we reuse the approach from Gluche et al. [1997] to
support incremental bags and maps. By wrapping a domain-speci�c incrementalization result in a
di�erentiation plugin, we adapt it to be usable in the context of a higher-order and general-purpose
programming language, and in interaction with other di�erentiation plugins for the other base
types of that language.

For base types with no known incrementalization strategy, the precise interfaces for di�erentia-
tion and proof plugins can guide the implementation e�ort. These interfaces could also from the
basis for a library of di�erentiation plugins that work well together.

Rewriting whole programs in our language would be an excessive requirements. Instead, we
embed our object language as an EDSL in some more expressive meta-language (Scala in our case
study), so that embedded programs are rei�ed. The embedded language can be made to resemble
the metalanguage [Rompf and Odersky, 2010]. To incrementalize a part of a computation, we write
it in our embedded object language, invoke D on the embedded program, optionally optimize the
resulting programs and �nally invoke them. The metalanguage also acts as a macro system for the
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histogram :: Map Int (Bag word)→ Map word Int
histogram = mapReduce groupOnBags additiveGroupOnIntegers histogramMap histogramReduce

where additiveGroupOnIntegers = Group (+) (λn → −n) 0
histogramMap = foldBag groupOnBags (λn → singletonBag (n, 1))
histogramReduce = foldBag additiveGroupOnIntegers id

-- Precondition:
-- For every key1 :: k1 and key2 :: k2, the terms mapper key1 and reducer key2 are homomorphisms.
mapReduce :: Group v1 → Group v3 → (k1 → v1 → Bag (k2, v2))→ (k2 → Bag v2 → v3)→ Map k1 v1 → Map k2 v3
mapReduce group1 group3 mapper reducer = reducePerKey ◦ groupByKey ◦mapPerKey

where mapPerKey = foldMap group1 groupOnBags mapper
groupByKey = foldBag (groupOnMaps groupOnBags) (λ(key, val)→ singletonMap key (singletonBag val))
reducePerKey = foldMap groupOnBags (groupOnMaps group3) (λkey bag → singletonMap key (reducer key bag))

Figure 16.1: The λ-term histogram with Haskell-like syntactic sugar. additiveGroupOnIntegers is the
abelian group induced on integers by addition (Z,+, 0,−).

object language, as usual. This allows us to simulate polymorphic collections such as (Bag ι) even
though the object language is simply-typed; technically, our plugin exposes a family of base types
to the object language.

16.2 Predicting nil changes
Handling changes to all inputs can induce excessive overhead in incremental programs [Acar,
2009]. It is also often unnecessary; for instance, the function argument of fold in Chapter 10 does
not change since it is a closed subterm of the program, so fold will receive a nil change for it. A
(conservative) static analysis can detect changes that are guaranteed to be nil at runtime. We can
then specialize derivatives that receive this change, so that they need not inspect the change at
runtime.

For our case study, we have implemented a simple static analysis which detects and propagates
information about closed terms. The analysis is not interesting and we omit details for lack of space.

16.2.1 Self-maintainability
In databases, a self-maintainable view [Gupta and Mumick, 1999] is a function that can update its
result from input changes alone, without looking at the actual input. By analogy, we call a derivative
self-maintainable if it uses no base parameters, only their changes. Self-maintainable derivatives
describe e�cient incremental computations: since they do not use their base input, their running
time does not have to depend on the input size.

Example 16.2.1
D nmerge o = λx dx y dy → merge dx dy is self-maintainable with the change structure �Bag S
described in Example 10.3.1, because it does not use the base inputs x and y. Other derivatives are
self-maintainable only in certain contexts. The derivative of element-wise function application
(map f xs) ignores the original value of the bag xs if the changes to f are always nil, because the
underlying primitive foldBag is self-maintainable in this case (as discussed in next section). We take
advantage of this by implementing a specialized derivative for foldBag.

Similarly to what we have seen in Sec. 10.6 that dgrandTotal needlessly recomputes merge xs ys
without optimizations. However, the result is a base input to fold ′. In next section, we’ll replace
fold ′ by a self-maintainable derivative (based again on foldBag) and will avoid this recomputation.�

To conservatively predict whether a derivative is going to be self-maintainable (and thus e�cient),
one can inspect whether the program restricts itself to (conditionally) self-maintainable primitives,
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like merge (always) or map f (only if df is nil, which is guaranteed when f is a closed term).
To avoid recomputing base arguments for self-maintainable derivatives (which never need

them), we currently employ lazy evaluation. Since we could use standard techniques for dead-code
elimination [Appel and Jim, 1997] instead, laziness is not central to our approach.

A signi�cant restriction is that not-self-maintainable derivatives can require expensive compu-
tations to supply their base arguments, which can be expensive to compute. Since they are also
computed while running the base program, one could reuse the previously computed value through
memoization or extensions of static caching (as discussed in Sec. 19.2.3). We leave implementing
these optimizations for future work. As a consequence, our current implementation delivers good
results only if most derivatives are self-maintainable.

16.3 Case study
We perform a case study on a nontrivial realistic program to demonstrate that ILC can speed it up.
We take the MapReduce-based skeleton of the word-count example [Lämmel, 2007]. We de�ne a
suitable di�erentiation plugin, adapt the program to use it and show that incremental computation
is faster than recomputation. We designed and implemented the di�erentiation plugin following the
requirements of the corresponding proof plugin, even though we did not formalize the proof plugin
(e.g. in Agda). For lack of space, we focus on base types which are crucial for our example and
its performance, that is, collections. The plugin also implements tuples, tagged unions, Booleans
and integers with the usual introduction and elimination forms, with few optimizations for their
derivatives.

wordcount takes a map from document IDs to documents and produces a map from words
appearing in the input to the count of their appearances, that is, a histogram:

wordcount : Map ID Document→ Map Word Int

For simplicity, instead of modeling strings, we model documents as bags of words and document
IDs as integers. Hence, what we implement is:

histogram : Map Int (Bag a) → Map a Int

We model words by integers (a = Int ), but treat them parametrically. Other than that, we adapt
directly Lämmel’s code to our language. Figure 16.1 shows the λ-term histogram.

Figure 16.2 shows a simpli�ed Scala implementation of the primitives used in Fig. 16.1. As
bag primitives, we provide constructors and a fold operation, following Gluche et al. [1997]. The
constructors for bags are ∅ (constructing the empty bag), singleton (constructing a bag with one
element), merge (constructing the merge of two bags) and negate (negate b constructs a bag with the
same elements as b but negated multiplicities); all but singleton represent abelian group operations.
Unlike for usual ADT constructors, the same bag can be constructed in di�erent ways, which are
equivalent by the equations de�ning abelian groups; for instance, since merge is commutative,
merge x y = merge y x . Folding on a bag will represent the bag through constructors in an arbitrary
way, and then replace constructors with arguments; to ensure a well-de�ned result, the arguments
of fold should respect the same equations, that is, they should form an abelian group; for instance,
the binary operator should be commutative. Hence, the fold operator foldBag can be de�ned to take
a function (corresponding to singleton) and an abelian group (for the other constructors). foldBag is
then de�ned by equations:

foldBag : Group τ → (σ → τ ) → Bag σ → τ

foldBag д@(_,�,�, e) f ∅ = e
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// Abelian groups
abstract class Group[A] {

def merge( value1 : A, value2 : A): A
def inverse(value: A): A
def zero: A

}

// Bags
type Bag[A] = collection.immutable.HashMap[A, Int]

def groupOnBags[A] = new Group[Bag[A]] {
def merge( bag1 : Bag[A], bag2 : Bag[A]) = . . .
def inverse(bag: Bag[A]) = bag.map({

case (value , count) ⇒ (value , -count)
})
def zero = collection.immutable.HashMap ()

}

def foldBag[A, B](group: Group[B], f: A ⇒ B, bag: Bag[A]): B =
bag.flatMap ({

case (x, c) if c ≥ 0 ⇒ Seq.fill(c)(f(x))
case (x, c) if c < 0 ⇒ Seq.fill(-c)(group.inverse(f(x)))

}). fold(group.zero)(group.merge)

// Maps
type Map[K, A] = collection.immutable.HashMap[K, A]

def groupOnMaps[K, A](group: Group[A]) = new Group[Map[K, A]] {
def merge( dict1 : Map[K, A], dict2 : Map[K, A]): Map[K, A] =

dict1 .merged( dict2 )({
case ((k, v1 ), (_, v2 )) ⇒ (k, group.merge( v1 , v2 ))

}). filter ({
case (k, v) ⇒ v , group.zero

})

def inverse(dict: Map[K, A]): Map[K, A] = dict.map({
case (k, v) ⇒ (k, group.inverse(v))

})

def zero = collection.immutable.HashMap ()
}

// The general map fold
def foldMapGen[K, A, B](zero: B, merge: (B, B) ⇒ B)

(f: (K, A) ⇒ B, dict: Map[K, A]): B =
dict.map(Function.tupled(f)). fold(zero)(merge)

// By using foldMap instead of foldMapGen, the user promises that
// f k is a homomorphism from groupA to groupB for each k : K.
def foldMap[K, A, B]( groupA: Group[A], groupB: Group[B])

(f: (K, A) ⇒ B, dict: Map[K, A]): B =
foldMapGen(groupB.zero , groupB.merge)(f, dict)

Figure 16.2: A Scala implementation of primitives for bags and maps. In the code, we call �, � and e
respectively merge, inverse, and zero. We also omit the relatively standard primitives.
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foldBag д@(_,�,�, e) f (merge b1 b2) = foldBag д f b1

� foldBag д f b1

foldBag д@(_,�,�, e) f (negate b) = � (foldBag д f b)

foldBag д@(_,�,�, e) f (singleton v) = f v

If д is a group, these equations specify foldBag д precisely [Gluche et al., 1997]. Moreover, the �rst
three equations mean that foldBag д f is the abelian group homomorphism between the abelian
group on bags and the group д (because those equations coincide with the de�nition). Figure 16.2
shows an implementation of foldBag as speci�ed above. Moreover, all functions which deconstruct
a bag can be expressed in terms of foldBag with suitable arguments. For instance, we can sum the
elements of a bag of integers with foldBag gZ (λx → x), where gZ is the abelian group induced
on integers by addition (Z,+, 0,−). Users of foldBag can de�ne di�erent abelian groups to specify
di�erent operations (for instance, to multiply �oating-point numbers).

If д and f do not change, foldBag д f has a self-maintainable derivative. By the equations
above,

foldBag д f (b ⊕ db)
= foldBag д f (merge b db)
= foldBag д f b � foldBag д f db
= foldBag д f b ⊕ GroupChange д (foldBag д f db)

We will describe the GroupChange change constructor in a moment. Before that, we note that as a
consequence, the derivative of foldBag д f is

λb db → GroupChange д (foldBag д f db) ,

and we can see it does not use b: as desired, it is self-maintainable. Additional restrictions are
require to make foldMap’s derivative self-maintainable. Those restrictions require the precondition
on mapReduce in Fig. 16.1. foldMapGen has the same implementation but without those restrictions;
as a consequence, its derivative is not self-maintainable, but it is more generally applicable. Lack of
space prevents us from giving more details.

To de�ne GroupChange, we need a suitable erased change structure on τ , such that ⊕ will be
equivalent to �. Since there might be multiple groups on τ , we allow the changes to specify a group,
and have ⊕ delegate to � (which we extract by pattern-matching on the group):

∆τ = Replace τ | GroupChange (AbelianGroup τ )τ
v ⊕ (Replace u) = u
v ⊕ (GroupChange (�, inverse, zero) dv) = v � dv
v 	 u = Replace v

That is, a change between two values is either simply the new value (which replaces the old one,
triggering recomputation), or their di�erence (computed with abelian group operations, like in the
changes structures for groups from Sec. 13.1.1. The operator 	 does not know which group to use,
so it does not take advantage of the group structure. However, foldBag is now able to generate a
group change.
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We rewrite grandTotal in terms of foldBag to take advantage of group-based changes.

id = λx → x

G+ = (Z,+,−, 0)
grandTotal = λxs→ λys→ foldBag G+ id (merge xs ys)
D n grandTotal o =

λxs→ λdxs→ λys→ λdys→
foldBag′ G+ G ′+ id id ′

(merge xs ys)
(merge′ xs dxs ys dys)

It is now possible to write down the derivative of foldBag.

(if static analysis detects that dG and df are nil changes)
foldBag′ = D n foldBag o =

λG → λdG → λf → λdf → λzs→ λdzs→
GroupChange G (foldBag G f dzs)

We know from Sec. 10.6 that

merge′ = λu → λdu→ λv → λdv → merge du dv.

Inlining foldBag′ and merge′ gives us a more readable term β-equivalent to the derivative of
grandTotal:

D n grandTotal o =
λxs→ λdxs→ λys→ λdys→ foldBag G+ id (merge dxs dys).

16.4 Benchmarking setup
We run object language programs by generating corresponding Scala code. To ensure rigorous
benchmarking [Georges et al., 2007], we use the Scalameter benchmarking library. To show that
the performance di�erence from the baseline is statistically signi�cant, we show 99%-con�dence
intervals in graphs.

We verify Eq. (10.1) experimentally by checking that the two sides of the equation always
evaluate to the same value.

We ran benchmarks on an 8-core Intel Core i7-2600 CPU running at 3.4 GHz, with 8GB of RAM,
running Scienti�c Linux release 6.4. While the benchmark code is single-threaded, the JVM o�oads
garbage collection to other cores. We use the preinstalled OpenJDK 1.7.0_25 and Scala 2.10.2.

Input generation Inputs are randomly generated to resemble English words over all webpages on
the internet: The vocabulary size and the average length of a webpage stay relatively the same, while
the number of webpages grows day by day. To generate a size-n input of type (Map Int (Bag Int)),
we generate n random numbers between 1 and 1000 and distribute them randomly in n/1000 bags.
Changes are randomly generated to resemble edits. A change has 50% probability to delete a random
existing number, and has 50% probability to insert a random number at a random location.
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Experimental units Thanks to Eq. (10.1), both recomputation f (a ⊕ da) and incremental com-
putation f a ⊕ D n f o a da produce the same result. Both programs are written in our object
language. To show that derivatives are faster, we compare these two computations. To compare
with recomputation, we measure the aggregated running time for running the derivative on the
change and for updating the original output with the result of the derivative.

16.5 Benchmark results
Our results show (Fig. 16.3) that our program reacts to input changes in essentially constant time, as
expected, hence orders of magnitude faster than recomputation. Constant factors are small enough
that the speedup is apparent on realistic input sizes.

We present our results in Fig. 16.3. As expected, the runtime of incremental computation is
essentially constant in the size of the input, while the runtime of recomputation is linear in the input
size. Hence, on our biggest inputs incremental computation is over 104 times faster.

Derivative time is in fact slightly irregular for the �rst few inputs, but this irregularity decreases
slowly with increasing warmup cycles. In the end, for derivatives we use 104 warmup cycles. With
fewer warmup cycles, running time for derivatives decreases signi�cantly during execution, going
from 2.6ms for n = 1000 to 0.2ms for n = 512000. Hence, we believe extended warmup is appropriate,
and the changes do not a�ect our general conclusions. Considering con�dence intervals, in our
experiments the running time for derivatives varies between 0.139ms and 0.378ms.

In our current implementation, the code of the generated derivatives can become quite big. For
the histogram example (which is around 1KB of code), a pretty-print of its derivative is around
40KB of code. The function application case in Fig. 12.1c can lead to a quadratic growth in the worst
case. More importantly, we realized that our home-grown transformation system in some cases
performs overly aggressive inlining, especially for derivatives, even though this is not required for
incrementalization, and believe this explains a signi�cant part of the problem. Indeed, code blowup
problems do not currently appear in later experiments (see Sec. 17.4).

16.6 Chapter conclusion
Our results show that the incrementalized program runs in essentially constant time and hence
orders of magnitude faster than the alternative of recomputation from scratch.

An important lessons from the evaluations is that, as anticipated in Sec. 16.2.1, to achieve good
performance our current implementation requires some form of dead code elimination, such as
laziness.
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Figure 16.3: Performance results in log–log scale, with input size on the x-axis and runtime in ms
on the y-axis. Con�dence intervals are shown by the whiskers; most whiskers are too small to be
visible.



Chapter 17

Cache-transfer-style conversion

17.1 Introduction
Incremental computation is often desirable: after computing an output from some input, we often
need to produce new outputs corresponding to changed inputs. One can simply rerun the same
base program on the new input; but instead, incremental computation transforms the input change
to an output change. This can be desirable because more e�cient.

Incremental computation could also be desirable because the changes themselves are of interest:
Imagine a typechecker explaining how some change to input source propagates to changes to the
typechecking result. More generally, imagine a program explaining how some change to its input
propagates through a computation into changes to the output.

ILC (Incremental λ-Calculus) [Cai et al., 2014] is a recent approach to incremental computation
for higher-order languages. ILC represents changes from an old value v1 to an updated value v2 as a
�rst-class value written dv. ILC also transforms statically base programs to incremental programs or
derivatives: derivatives produce output changes from changes to all their inputs. Since functions are
�rst-class values, ILC introduces a notion of function changes.

However, as mentioned by Cai et al. and as we explain below, ILC as currently de�ned does
not allow reusing intermediate results created by the base computation during the incremental
computation. That restricts ILC to supporting e�ciently only self-maintainable computations, a
rather restrictive class: for instance, mapping self-maintainable functions on a sequence is self-
maintainable, but dividing numbers isn’t! In this paper, we remove this limitation.

To remember intermediate results, many incrementalization approaches rely on forms of memo-
ization: one uses hashtables to memoize function results, or dynamic dependence graphs [Acar,
2005] to remember the computation trace. However, such data structures often remember results
that might not be reused; moreover, the data structures themselves (as opposed to their values)
occupy additional memory, looking up intermediate results has a cost in time, and typical general-
purpose optimizers cannot predict results from memoization lookups. Instead, ILC aims to produce
purely functional programs that are suitable for further optimizations.

We eschew memoization: instead, we transform programs to cache-transfer style (CTS), following
ideas from Liu and Teitelbaum [1995]. CTS functions output caches of intermediate results along
with their primary results. Caches are just nested tuples whose structure is derived from code, and
accessing them does not involve looking up keys depending on inputs. We also extend di�erentiation
to produce CTS derivatives, which can extract from caches any intermediate results they need. This
approach was inspired and pioneered by Liu and Teitelbaum for untyped �rst-order functional
languages, but we integrate it with ILC and extend it to higher-order typed languages.

135
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While CTS functions still produce additional intermediate data structures, produced programs
can be subject to further optimizations. We believe static analysis of a CTS function and its CTS
derivative can identify and remove unneeded state (similar to what has been done by Liu and
Teitelbaum), as we discuss in Sec. 17.5.6. We leave a more careful analysis to future work.

We prove most of our formalization correct in Coq To support non-simply-typed programs, all
our proofs are for untyped λ-calculus, while previous ILC correctness proofs were restricted to
simply-typed λ-calculus. Unlike previous ILC proofs, we simply de�ne which changes are valid via
a logical relation, then show the fundamental property for this logical relation (see Sec. 17.2.1). To
extend this proof to untyped λ-calculus, we switch to step-indexed logical relations.

To support di�erentiation on our case studies, we also represent function changes as closures
that can be inspected, to support manipulating them more e�ciently and detecting at runtime when
a function change is nil hence need not be applied. To show this representation is correct, we also
use closures in our mechanized proof.

Unlike plain ILC, typing programs in CTS is challenging, because the shape of caches for a
function depends on the function implementation. Our case studies show how to non-trivially
embed resulting programs in typed languages, at least for our case studies, but our proofs support
an untyped target language.

In sum, we present the following contributions:

• via examples, we motivate extending ILC to remember intermediate results (Sec. 17.2);

• we give a novel proof of correctness for ILC for untyped λ-calculus, based on step-indexed
logical relations (Sec. 17.3.3);

• building on top of ILC-style di�erentiation, we show how to transform untyped higher-order
programs to cache-transfer-style (CTS) (Sec. 17.3.5);

• we show that programs and derivatives in cache-transfer style simulate correctly their non-
CTS variants (Sec. 17.3.6);

• we mechanize in Coq most of our proofs;

• we perform performance case studies (in Sec. 17.4) applying (by hand) extension of this
technique to Haskell programs, and incrementalize e�ciently also programs that do not admit
self-maintainable derivatives.

The rest of the paper is organized as follows. Sec. 17.2 summarizes ILC and motivates the
extension to cache-transfer style. Sec. 17.3 presents our formalization and proofs. Sec. 17.4 presents
our case studies and benchmarks. Sec. 17.5 discusses limitations and future work. Sec. 17.6 discusses
related work and Sec. 17.7 concludes.

17.2 Introducing Cache-Transfer Style
In this section we motivate cache-transfer style (CTS). Sec. 17.2.1 summarizes a reformulation of
ILC, so we recommend it also to readers familiar with Cai et al. [2014]. In Sec. 17.2.2 we consider a
minimal �rst-order example, namely an average function. We incrementalize it using ILC, explain
why the result is ine�cient, and show that remembering results via cache-transfer style enables
e�cient incrementalization with asymptotic speedups. In Sec. 17.2.3 we consider a higher-order
example that requires not just cache-transfer style but also e�cient support for both nil and non-nil
function changes, together with the ability to detect nil changes.
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17.2.1 Background

ILC considers simply-typed programs, and assumes that base types and primitives come with
support for incrementalization.

The ILC framework describes changes as �rst-class values, and types them using dependent types.
To each type A we associate a type ∆A of changes for A, and an update operator ⊕ :: A→ ∆A→ A,
that updates an initial value with a change to compute an updated value. We also consider changes
for evaluation environments, which contain changes for each environment entry.

A change da :: ∆A can be valid from a1 :: A to a2 :: A, and we write then da B a1 ↪→ a2 :: A.
Then a1 is the source or initial value for da, and a2 is the destination or updated value for da. From
da B a1 ↪→ a2 :: A follows that a2 coincides with a1 ⊕ da, but validity imposes additional invariants
that are useful during incrementalization. A change can be valid for more than one source, but a
change da and a source a1 uniquely determine the destination a2 = a1 ⊕ da. To avoid ambiguity, we
always consider a change together with a speci�c source.

Each type comes with its de�nition of validity: Validity is a ternary logical relation. For function
types A→ B, we de�ne ∆(A→ B) = A→ ∆A→ ∆B, and say that a function change df :: ∆(A→ B)
is valid from f1 :: A → B to f2 :: A → B (that is, df B f1 ↪→ f2 :: A → B) if and only if df maps
valid input changes to valid output changes; by that, we mean that if da B a1 ↪→ a2 :: A, then
df a1 da B f1 a1 ↪→ f2 a2 :: B. Source and destination of df a1 da, that is f1 a1 and f2 a2, are the
result of applying two di�erent functions, that is f1 and f2.

ILC expresses incremental programs as derivatives. Generalizing previous usage, we simply
say derivative for all terms produced by di�erentiation. If dE is a valid environment change from
E1 to E2, and term t is well-typed and can be evaluated against environments E1, E2, then term
D ιn t o, the derivative of t, evaluated against dE, produces a change from v1 to v2, where v1 is the
value of t in environment E1, and v2 is the value of t in environment E2. This correctness property
follows immediately the fundamental property for the logical relation of validity and can be proven
accordingly; we give a step-indexed variant of this proof in Sec. 17.3.3. If t is a function and dE is a
nil change (that is, its source E1 and destination E2 coincide), then D ιn t o produces a nil function
change and is also a derivative according to Cai et al. [2014].

To support incrementalization, one must de�ne change types and validity for each base type, and
a correct derivative for each primitive. Functions written in terms of primitives can be di�erentiated
automatically. As in all approaches to incrementalization (see Sec. 17.6), one cannot incrementalize
e�ciently an arbitrary program: ILC limits the e�ort to base types and primitives.

17.2.2 A �rst-order motivating example: computing averages

Suppose we need to compute the average y of a bag of numbers xs :: Bag Z, and that whenever we
receive a change dxs :: ∆(Bag Z) to this bag we need to compute the change dy to the average y.

In fact, we expect multiple consecutive updates to our bag. Hence, we say we have an initial bag
xs1 and compute its average y1 as y1 = avg xs1, and then consecutive changes dxs1, dxs2, . . .. Change
dxs1 goes from xs1 to xs2, dxs2 goes from xs2 to xs3, and so on. We need to compute y2 = avg xs2,
y3 = avg xs3, but more quickly than we would by calling avg again.

We can compute the average through the following function (that we present in Haskell):

avg xs =
let s = sum xs

n = length xs
r = div s n

in r
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We write this function in A’-normal form (A’NF), a small variant of A-normal form (ANF) Sabry and
Felleisen [1993] that we introduce. In A’NF, programs bind to a variable the result of each function
call in avg, instead of using it directly; unlike plain ANF, A’NF also binds the result of tail calls such
as div s n in avg. A’NF simpli�es conversion to cache-transfer style.

We can incrementalize e�ciently both sum and length by generating via ILC their derivatives
dsum and dlength, assuming a language plugin supporting bags supporting folds.

But division is more challenging. To be sure, we can write the following derivative:

ddiv a1 da b1 db =
let a2 = a1 ⊕ da

b2 = b1 ⊕ db
in div a2 b2 	 div a1 b1

Function ddiv computes the di�erence between the updated and the original result without any
special optimization, but still takes O(1) for machine integers. But unlike other derivatives, ddiv
uses its base inputs a1 and b1, that is, it is not self-maintainable [Cai et al., 2014].

Because ddiv is not self-maintainable, a derivative calling it will not be e�cient. To wit, let us
look at davg, the derivative of avg:

davg xs dxs =
let s = sum xs

ds = dsum xs dxs
n = length xs
dn = dlength xs dxs
r = div s n
dr = ddiv s ds n dn

in dr

This function recomputes s, n and r just like in avg, but r is not used so its recomputation can
easily be removed by later optimizations. On the other hand, derivative ddiv will use the values
of its base inputs a1 and b1, so derivative davg will need to recompute s and n and save no time
over recomputation! If ddiv were instead a self-maintainable derivative, the computations of s
and n would also be unneeded and could be optimized away. Cai et al. leave e�cient support for
non-self-maintainable derivatives for future work.

To avoid recomputation we must simply remember intermediate results as needed. Executing
davg xs1 dxs1 will compute exactly the same s and n as executing avg xs1, so we must just save and
reuse them, without needing to use memoization proper. Hence, we CTS-convert each function f
to a CTS function fC and a CTS derivative dfC: CTS function fC produces, together with its �nal
result, a cache, that the caller must pass to CTS derivative dfC. A cache is just a tuple of values,
containing information from subcalls — either inputs (as we explain in a bit), intermediate results
or subcaches, that is caches returned from further function calls. In fact, typically only primitive
functions like div need to recall actual result; automatically transformed functions only need to
remember subcaches or inputs.

CTS conversion is simpli�ed by �rst converting to A’NF, where all results of subcomputations
are bound to variables: we just collect all caches in scope and return them.

As an additional step, we avoid always passing base inputs to derivatives by de�ning ∆(A→
B) = ∆A→ ∆B. Instead of always passing a base input and possibly not using it, we can simply
assume that primitives whose derivative needs a base input store the input in the cache.

To make the translation uniform, we stipulate all functions in the program are transformed
to CTS, using a (potentially empty) cache. Since the type of the cache for a function f :: A → B
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depends on implementation of f , we introduce for each function f a type for its cache FC, so that
CTS function fC has type A→ (B, FC) and CTS derivative dfC has type ∆A→ FC → (∆B, FC).

The de�nition of FC is only needed inside fC and dfC, and it can be hidden in other functions to
keep implementation details hidden in transformed code; because of limitations of Haskell modules,
we can only hide such de�nitions from functions in other modules.

Since functions of the same type translate to functions of di�erent types, the translation does
not preserve well-typedness in a higher-order language in general, but it works well in our case
studies (Sec. 17.4); Sec. 17.4.1 shows how to map such functions. We return to this point brie�y
in Sec. 17.5.1.

CTS-converting our example produces the following code:

data AvgC = AvgC SumC LengthC DivC
avgC :: Bag Z→ (Z,AvgC)
avgC xs =
let (s, cs1) = sumC xs
(n, cn1) = lengthC xs
(r, cr1) = s ‘divC‘ n

in (r,AvgC cs1 cn1 cr1)
davgC :: ∆(Bag Z) → AvgC → (∆Z,AvgC)
davgC dxs (AvgC cs1 cn1 cr1) =
let (ds, cs2) = dsumC dxs cs1
(dn, cn2) = dlengthC dxs cn1
(dr, cr2) = ddivC ds dn cr1
in (dr,AvgC cs2 cn2 cr2)

In the above program, sumC and lengthC are self-maintainable, that is they need no base inputs
and can be transformed to use empty caches. On the other hand, ddiv is not self-maintainable, so
we transform it to remember and use its base inputs.

divC a b = (a ‘div‘ b, (a, b))
ddivC da db (a1, b1) =

let a2 = a1 ⊕ da
b2 = b1 ⊕ db

in (div a2 b2 	 div a1 b1, (a2, b2))

Crucially, ddivC must return an updated cache to ensure correct incrementalization, so that applica-
tion of further changes works correctly. In general, if (y, c1) = fC x and (dy, c2) = dfC dx c1, then
(y ⊕ dy, c2) must equal the result of the base function fC applied to the new input x ⊕ dx, that is
(y ⊕ dy, c2) = fC (x ⊕ dx).

Finally, to use these functions, we need to adapt the caller. Let’s �rst show how to deal with a
sequence of changes: imagine that dxs1 is a valid change for xs, and that dxs2 is a valid change for
xs ⊕ dxs1. To update the average for both changes, we can then call the avgC and davgC as follows:

-- A simple example caller with two consecutive changes
avgDAvgC :: Bag Z→ ∆(Bag Z) → ∆(Bag Z) →
(Z,∆Z,∆Z,AvgC)

avgDAvgC xs dxs1 dxs2 =
let (res1, cache1) = avgC xs
(dres1, cache2) = davgC dxs1 cache1
(dres2, cache3) = davgC dxs2 cache2

in (res1, dres1, dres2, cache3)
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Incrementalization guarantees that the produced changes update the output correctly in response
to the input changes: that is, we have res1 ⊕ dres1 = avg (xs ⊕ dxs1) and res1 ⊕ dres1 ⊕ dres2 =
avg (xs ⊕ dxs1 ⊕ dxs2). We also return the last cache to allow further updates to be processed.

Alternatively, we can try writing a caller that gets an initial input and a (lazy) list of changes,
does incremental computation, and prints updated outputs:

processChangeList (dxsN : dxss) yN cacheN = do
let (dy, cacheN ′) = avg′ dxsN cacheN
yN ′ = yN ⊕ dy

print yN ′

processChangeList dxss yN ′ cacheN ′

-- Example caller with multiple consecutive
-- changes

someCaller xs1 dxss = do
let (y1, cache1) = avgC xs1
processChangeList dxss y1 cache1

More in general, we produce both an augmented base function and a derivative, where the
augmented base function communicates with the derivative by returning a cache. The contents
of this cache are determined statically, and can be accessed by tuple projections without dynamic
lookups. In the rest of the paper, we use the above idea to develop a correct transformation that
allows incrementalizing programs using cache-transfer style.

We’ll return to this example in Sec. 17.4.1.

17.2.3 A higher-order motivating example: nested loops
Next, we consider CTS di�erentiation on a minimal higher-order example. To incrementalize this
example, we enable detecting nil function changes at runtime by representing function changes as
closures that can be inspected by incremental programs. We’ll return to this example in Sec. 17.4.2.

We take an example of nested loops over sequences, implemented in terms of standard Haskell
functions map and concat. For simplicity, we compute the Cartesian product of inputs:

cartesianProduct :: Sequence a→ Sequence b→ Sequence (a, b)
cartesianProduct xs ys =

concatMap (λx → map (λy → (x, y)) ys) xs
concatMap f xs = concat (map f xs)

Computing cartesianProduct xs ys loops over each element x from sequence xs and y from sequence
ys, and produces a list of pairs (x, y), taking quadratic time O(n2) (we assume for simplicity that
|xs | and |ys | are both O(n)). Adding a fresh element to either xs or ys generates an output change
containingΘ(n) fresh pairs: hence derivative dcartesianProduct must take at least linear time. Thanks
to specialized derivatives dmap and dconcat for primitives map and concat, dcartesianProduct has
asymptotically optimal time complexity. To achieve this complexity, dmap f df must detect when
df is a nil function change and avoid applying it to unchanged input elements.

To simplify the transformations we describe, we λ-lift programs before di�erentiating and
transforming them.

cartesianProduct xs ys =
concatMap (mapPair ys) xs

mapPair ys = λx → map (pair x) ys
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pair x = λy → (x, y)
concatMap f xs =
let yss = map f xs
in concat yss

Suppose we add an element to either xs or ys. If change dys adds one element to ys, then
dmapPair ys dys, the argument to dconcatMap, is a non-nil function change taking constant time,
so dconcatMap must apply it to each element of xs ⊕ dxs.

Suppose next that change dxs adds one element to xs and dys is a nil change for ys. Then
dmapPair ys dys is a nil function change. And we must detect this dynamically. If a function change
df :: ∆(A→ B) is represented as a function, and A is in�nite, one cannot detect dynamically that it
is a nil change. To enable runtime nil change detection, we apply closure conversion on function
changes: a function change df , represented as a closure is nil for f only if all environment changes
it contains are also nil, and if the contained function is a derivative of f ’s function.

17.3 Formalization
In this section, we formalize cache-transfer-style (CTS) di�erentiation and formally prove its
soundness with respect to di�erentiation. We furthermore present a novel proof of correctness for
di�erentiation itself.

To simplify the proof, we encode many invariants of input and output programs by de�ning
input and output languages with a suitably restricted abstract syntax: Restricting the input language
simpli�es the transformations, while restricting the output languages simpli�es the semantics. Since
base programs and derivatives have di�erent shapes, we de�ne di�erent syntactic categories of base
terms and change terms.

We de�ne and prove sound three transformations, across two languages: �rst, we present a
variant of di�erentiation (as de�ned by Cai et al. [2014]), going from base terms of language λAL to
change terms of λAL , and we prove it sound with respect to non-incremental evaluation. Second, we
de�ne CTS conversion as a pair of transformations going from base terms of λAL : CTS translation
produces CTS versions of base functions as base terms in iλAL , and CTS di�erentiation produces
CTS derivatives as change terms in iλAL .

As source language for CTS di�erentiation, we use a core language named λAL . This language is
a common target of a compiler front-end for a functional programming language: in this language,
terms are written in λ-lifted and A’-normal form (A’NF), so that every intermediate result is named,
and can thus be stored in a cache by CTS conversion and reused later (as described in Sec. 17.2).

The target language for CTS di�erentiation is named iλAL . Programs in this target language are
also λ-lifted and in A’NF. But additionally, in these programs every toplevel function f produces a
cache which is to be conveyed to the derivatives of f .

The rest of this section is organized as follows. Sec. 17.3.1 presents syntax and semantics of
source language λAL . Sec. 17.3.2 de�nes di�erentiation, and Sec. 17.3.3 proves it correct. Sec. 17.3.4
presents syntax and semantics of target language λAL . Sec. 17.3.5 de�ne CTS conversion, and
Sec. 17.3.6 proves it correct. Most of the formalization has been mechanized in Coq (the proofs of
some straightforward lemmas are left for future work).

17.3.1 The source language λAL
Syntax The syntax of λAL is given in Figure 17.1. Our source language allows representing both
base terms t and change terms dt.
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Base terms
t ::= let y = f x in t Call

| let y = (x) in t Tuple
| x Result

Change terms
dt ::= let y = f x, dy = df x dx in dt Call

| let y = (x), dy = (dx) in dt Tuple
| dx Result

Closed values
v ::= E[λx . t ] Closure

| (v) Tuple
| ` Literal
| p Primitive

Value environments
E ::= E ; x = v Value binding

| • Empty
Change values

dv ::= dE[λx dx . dt] Closure
| (dv) Tuple
| d` Literal
| !v Replace
| nil Nil

Change environments
dE ::= dE ; x = v, dx = dv Binding

| • Empty
n, k ∈ N Step indexes

Figure 17.1: Source language λAL (syntax).

[SVar]
E ` x ⇓1 E(x)

[STuple]
E ; y = (E(x)) ` t ⇓n v

E ` let y = (x) in t ⇓n+1 v

[SPrimitiveCall]
E(f ) = p E ; y = δp(E(x)) ` t ⇓n v

E ` let y = f x in t ⇓n+1 v

[SClosureCall]
E(f ) = Ef [λx . tf ] Ef ; x = E(x) ` tf ⇓m vy E ; y = vy ` t ⇓n v

E ` let y = f x in t ⇓m+n+1 v

Figure 17.2: Step-indexed big-step semantics for base terms of source language λAL .

Our syntax for base terms t represents λ-lifted programs in A’-normal form (Sec. 17.2.2). We
write x for a sequence of variables of some unspeci�ed length x1, x2, . . . , xm . A term can be either a
bound variable x, or a let-binding of y in subterm t to either a new tuple (x) (let y = (x) in t ), or
the result of calling function f on argument x (let y = f x in t ). Both f and x are variables to be
looked up in the environment. Terms cannot contain λ-abstractions as they have been λ-lifted to
top-level de�nitions, which we encode as closures in the initial environments. Unlike standard ANF
we add no special syntax for function calls in tail position (see Sec. 17.5.3 for a discussion about this
limitation). We often inspect the result of a function call f x, which is not a valid term in our syntax.
To enable this, we write “@(f , x)” for “let y = f x in y” where y is chosen fresh.

Our syntax for change terms dt mimicks the syntax for base terms except that (i) each function
call is immediately followed by the evaluation of its derivative and (ii) the �nal value returned by a
change term is a change variable dx. As we will see, this ad-hoc syntax of change terms is tailored
to capture the programs produced by di�erentiation. We only allows α-renamings that maintain
the invariant that the de�nition of x is immediately followed by the de�nition of dx: if x is renamed
to y then dx must be renamed to dy.

Semantics A closed value for base terms is either a closure, a tuple of values, a constants or
a primitive. A closure is a pair of an evaluation environment E and a λ-abstraction closed with
respect to E. The set of available constants is left abstract. It may contain usual �rst-order constants
like integers. We also leave abstract the primitives p like if-then-else or projections of tuple
components. As usual, environments E map variables to closed values. With no loss of generality,
we assume that all bound variables are distinct.

Figure 17.2 shows a step-indexed big-step semantics for base terms, de�ned through judgment E `
t ⇓n v , pronounced “Under environment E, base term t evaluates to closed value v in n steps.” Our
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step-indexes count the number of “nodes” of a big-step derivation.1 We explain each rule in turn.
Rule [SVar] looks variable x up in environment E. Other rules evaluate let-binding let y = . . . in t
in environment E: Each rule computes y’s new value vy (taking m steps, where m can be zero) and
evaluates in n steps body t to v , using environment E extended by binding y to vy . The overall
let-binding evaluates to v in m + n + 1 steps. But di�erent rules compute y’s value di�erently.
[STuple] looks each variable in x up in E to evaluate tuple (x) (in m = 0 steps). [SPrimitiveCall]
evaluates function calls where variable f is bound in E to a primitive p. How primitives are evaluated
is speci�ed by function δp(–) from closed values to closed values. To evaluate such a primitive call,
this rule applies δp(–) to x’s value (in m = 0 steps). [SClosureCall] evaluates functions calls where
variable f is bound in E to closure Ef [λx . tf ]: this rule evaluates closure body tf inm steps, using
closure environment Ef extended with the value of argument x in E.

Change semantics We move on to de�ne how change terms evaluate to change values. We start
by required auxiliary de�nitions.

A closed change value is either a closure change, a tuple change, a literal change, a replacement
change or a nil change. A closure change is a pair made of an evaluation environment dE and
a λ-abstraction expecting a value and a change value as arguments to evaluate a change term into
an output change value. An evaluation environment dE follows the same structure as let-bindings
of change terms: it binds variables to closed values and each variable x is immediately followed by
a binding for its associated change variable dx. As with let-bindings of change terms, α-renamings
in an environment dE must rename dx into dy if x is renamed into y. With no loss of generality, we
assume that all bound term variables are distinct in these environments.

We de�ne the original environment bdEc1 and the new environment bdEc2 of a change environ-
ment dE by induction over dE:

b•ci = • i = 1, 2
bdE; x = v ; dx = dvc1 = bdEc1; x = v
bdE; x = v ; dx = dvc2 = bdEc2; x = v ⊕ dv

This last rule makes use of an operation ⊕ to update a value with a change, which may fail at
runtime. Indeed, change update is a partial function written “v ⊕ dv”, de�ned as follows:

v ⊕ nil = v
v1 ⊕ !v2 = v2
` ⊕ d` = δ⊕(`,d`)

E[λx . t] ⊕ dE[λx dx . dt] = (E ⊕ dE)[λx . t]
(v1, . . . ,vn) ⊕ (dv1, . . . , dvn) = (v1 ⊕ dv1, . . . ,vn ⊕ dvn)

where
(E; x = v) ⊕ (dE; x = v ; dx = dv) = ((E ⊕ dE); x = (v ⊕ dv))

Nil and replacement changes can be used to update all values (constants, tuples, primitives and
closures), while tuple changes can only update tuples, literal changes can only update literals and
closure changes can only update closures. A nil change leaves a value unchanged. A replacement
change overrides the current value v with a new one v ′. On literals, ⊕ is de�ned via some in-
terpretation function δ⊕ . Change update for a closure ignores dt instead of combining it with t
somehow. This may seem surprising, but we only need ⊕ to behave well for valid changes (as shown
by Lemma 17.3.1): for valid closure changes, dt must behave similarly to D ιn t o anyway, so only
environment updates matter. This de�nition also avoids having to modify terms at runtime, which
would be di�cult to implement safely.

1Instead, Ahmed [2006] and Acar et al. [2008] count the number of steps that small-step evaluation would take (as we did
in Appendix C), but this simpli�es some proof steps and makes a minor di�erence in others.
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[SDVar]
dE ` dx ⇓ dE(dx)

[SDTuple]
dE(x, dx) = vx, dvx

dE ; y = (vx ); dy = (dvx ) ` dt ⇓ dv

dE ` let y = (x), dy = (dx) in dt ⇓ dv

[SDReplaceCall]
dE(df ) =!vf

bdE c1 ` @(f , x) ⇓n vy
bdE c2 ` @(f , x) ⇓m vy ′

dE ; y = vy ; dy =!vy ′ ` dt ⇓ dv

dE ` let y = f x, dy = df x dx in dt ⇓ dv

[SDClosureNil]
dE(f , df ) = Ef [λx . tf ], nil
Ef ; x = dE(x) ` tf ⇓n vy

Ef ; x = bdE c2(x) ` tf ⇓m vy ′

dE ; y = vy ; dy =!vy ′ ` dt ⇓ dv

dE ` let y = f x, dy = df x dx in dt ⇓ dv

[SDPrimitiveNil]
dE(f , df ) = p, nil
dE(x, dx) = vx, dvx

dE ; y = δp(vx ); dy = ∆p(vx, dvx ) ` dt ⇓ dv

dE ` let y = f x, dy = df x dx in dt ⇓ dv

[SDClosureChange]
dE(f , df ) = Ef [λx . tf ], dEf [λx dx . dtf ]

dE(x, dx) = vx, dvx
Ef ; x = vx ` tf ⇓n vy

dEf ; x = vx ; dx = dvx ` dtf ⇓ dvy
dE ; y = vy ; dy = dvy ` dt ⇓ dv

dE ` let y = f x, dy = df x dx in dt ⇓ dv

Figure 17.3: Step-indexed big-step semantics for the change terms of the source language λAL .

Having given these de�nitions, we show in Fig. 17.3 a big-step semantics for change terms (with-
out step-indexing), de�ned through judgment dE ` dt ⇓ dv, pronounced “Under the environment
dE, the change term dt evaluates into the closed change value dv.” [SDVar] looks up into dE to
return a value for dx. [SDTuple] builds a tuple out of the values of x and a change tuple out of the
change values of dx as found in the environment dE. There are four rules to evaluate let-binding
depending on the nature of dE(df ). These four rules systematically recomputes the value vy of y in
the original environment. They di�er in the way they compute the change dy to y.

If dE(df ) is a replacement, [SDReplaceCall] applies. Replacing the value of f in the environment
forces recomputing f x from scratch in the new environment. The resulting value v ′y is the new
value which must replace vy , so dy binds to !v ′y when evaluating the let body.

If dE(df ) is a nil change, we have two rules depending on the nature of dE(f ). If dE(f ) is a
closure, [SDClosureNil] applies and in that case the nil change of dE(f ) is the exact same closure.
Hence, to compute dy, we reevaluate this closure applied to the updated argument bdEc2(x) to a
value v ′y and bind dy to !v ′y . In other words, this rule is equivalent to [SDReplaceCall] in the case
where a closure is replaced by itself.2 If dE(f ) is a primitive, [SDPrimitiveNil] applies. The nil
change of a primitive p is its derivative which interpretation is realized by a function ∆p(–). The
evaluation of this function on the input value and the input change leads to the change dvy bound
to dy.

If dE(f ) is a closure change dEf [λx dx . dtf ], [SDClosureChange] applies. The change dvy results
from the evaluation of dtf in the closure change environment dEf augmented with an input value
for x and a change value for dx. Again, let us recall that we will maintain the invariant that the
term dtf behaves as the derivative of f so this rule can be seen as the invocation of f ’s derivative.

2Based on Appendix C, we are con�dent we could in fact use the derivative of tf instead of replacement changes, but
transforming terms in a semantics seems aesthetically wrong. We can also restrict nil to primitives, as we essentially did in
Appendix C.
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Expressiveness A closure in the initial environment can be used to represent a top-level de�nition.
Since environment entries can point to primitives, we need no syntax to directly represent calls of
primitives in the syntax of base terms. To encode in our syntax a program with top-level de�nitions
and a term to be evaluated representing the entry point, one can produce a term t representing
the entry point together with an environment E containing as values any top-level de�nitions,
primitives and constants used in the program.

Our formalization does not model directly n-ary functions, but they can be encoded through
unary functions and tuples. This encoding does not support currying e�ciently, but we discuss
possible solutions in Sec. 17.5.7.

Control operators, like recursion combinators or branching, can be introduced as primitive
operations as well. If the branching condition changes, expressing the output change in general
requires replacement changes. Similarly to branching we can add tagged unions.

17.3.2 Static di�erentiation in λAL
De�nition 10.5.1 de�nes di�erentiation for simply-typed λ-calculus terms. Figure 17.4 shows
di�erentiation for λAL syntax.

D ιn x o = dx

D ιn let y = (x) in t o = let y = (x), dy = (dx) in D ιn t o
D ιn let y = f x in t o = let y = f x, dy = df x dx in D ιn t o

Figure 17.4: Static di�erentiation in λAL .

Di�erentiating a base term t produces a change term D ιn t o, its derivative. Di�erentiating
�nal result variable x produces its change variable dx. Di�erentiation copies each binding of an
intermediate result y to the output and adds a new bindings for its change dy. If y is bound to
tuple (x), then dy will be bound to the change tuple (dx). If y is bound to function application f x,
then dy will be bound to the application of function change df to input x and its change dx.

Evaluating D ιn t o recomputes all intermediate results computed by t . This recomputation will
be avoided through cache-transfer style in Sec. 17.3.5.

The original transformation for static di�erential of λ-terms [Cai et al., 2014] has three cases
which we recall here:

Derive(x) = dx
Derive(t u) = Derive(t)u Derive(u)

Derive(λx . t) = λx dx .Derive(t)

Even though the �rst two cases of Cai et al.’s di�erentiation map into the two cases of our
di�erentiation variant, one may ask where the third case is realized now. Actually, this third case
occurs while we transform the initial environment. Indeed, we will assume that the closures of the
environment of the source program have been adjoined a derivative. More formally, we suppose
that the derivative of t is evaluated under an environment D ιnE o obtained as follows:

D ιn • o = •

D ιnE; f = Ef [λx . t] o = D ιnE o; f = Ef [λx . t], df = D ιnEf o[λx dx .D ιn t o]
D ιnE; x = v o = D ιnE o; x = v, dx = nil (If v is not a closure.)
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17.3.3 A new soundness proof for static di�erentiation
As in Cai et al. [2014]’s development, static di�erentiation is only sound on input changes that
are valid. However, our de�nition of validity needs to be signi�cantly di�erent. Cai et al. prove
soundness for a strongly normalizing simply-typed λ-calculus using denotational semantics. We
generalize this result to an untyped and Turing-complete language using purely syntactic arguments.
In both scenarios, a function change is only valid if it turns valid input changes into valid output
changes, so validity is a logical relation. Since standard logical relations only apply to typed
languages, we turn to step-indexed logical relations.

Validity as a step-indexed logical relation

To state and prove soundness of di�erentiation, we de�ne validity by introducing a ternary step-
indexed relation over base values, changes and updated values, following previous work on step-
indexed logical relations [Ahmed, 2006; Acar et al., 2008]. Experts might notice small di�erences in
our step-indexing, as mentioned in Sec. 17.3.1, but they do not a�ect the substance of the proof. We
write

dv Bk v1 ↪→ v2

and say that “dv is a valid change fromv1 tov2, up to k steps” to mean that dv is a change fromv1 to
v2 and that dv is a valid description of the di�erences between v1 and v2, with validity tested with
up to k steps. To justify this intuition of validity, we state and prove two lemmas: a valid change
from v1 to v2 goes indeed from v1 to v2 (Lemma 17.3.1), and if a change is valid up to k steps it is
also valid up to fewer steps (Lemma 17.3.2).

Lemma 17.3.1 (⊕ agrees with validity)
If we have dv Bk v1 ↪→ v2 for all step-indexes k , then v1 ⊕ dv = v2. �

Lemma 17.3.2 (Downward-closure)
If N ≥ n, then dv BN v1 ↪→ v2 implies dv Bn v1 ↪→ v2. �

• d` Bn ` ↪→ δ⊕(`,d`)

• !v2 Bn v1 ↪→ v2

• nil Bn v ↪→ v

• (dv1, . . . , dvm ) Bn (v1, . . . ,vm ) ↪→ (v ′1, . . . ,v
′
m )

if and only if
∀k < n,∀i ∈ [1 . . .m], dvi Bn vi ↪→ v ′i

• dE[λx dx . dt] Bn E1[λx . t] ↪→ E2[λx . t]
if and only if E2 = E1 ⊕ dE and
∀k < n,v1, dv,v2,

if dv Bk v1 ↪→ v2
then
(dE; dv ` dt) Ik (E1; x = v1 ` t) ↪→
(E2; x = v2 ` t)

Figure 17.5: Step-indexed relation between values and changes.

As usual with step-indexed logical relations, validity is de�ned by well-founded induction over
naturals ordered by <. To show this, it helps to observe that evaluation always takes at least one
step.

Validity is formally de�ned by cases in Figure 17.5; we describe in turn each case. First, a
constant change d` is a valid change from ` to `⊕d` = δ⊕(`,d`). Since the function δ⊕ is partial, the
relation only holds for the constant changes d` which are valid changes for `. Second, a replacement
change !v2 is always a valid change from any value v1 to v2. Third, a nil change is a valid change
between any value and itself. Fourth, a tuple change is valid up to step n, if each of its components
is valid up to any step strictly less than k . Fifth, we de�ne validity for closure changes. Roughly
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speaking, this statement means that a closure change is valid if (i) its environment change dE is
valid for the original closure environment E1 and for the new closure environment E2; (ii) when
applied to related values, the closure bodies t1 and t2 are related by dt. The validity relation between
terms is de�ned as follows:

(dE ` dt) In (E1 ` t1) ↪→ (E2 ` t2)
if and only if ∀k < n,v1,v2,
E1 ` t1 ⇓k v1 and E2 ` t2 ⇓ v2
implies that ∃dv,dE ` dt ⇓ dv ∧ dv Bn−k v1 ↪→ v2

We extend this relation from values to environments by de�ning a judgment dE Bk E1 ↪→ E2
de�ned as follows:

• Bk • ↪→ •
dE Bk E1 ↪→ E2 dv Bk v1 ↪→ v2

(dE; x = v1; dx = dv) Bk (E1; x = v1) ↪→ E2; x = v2

The above lemmas about validity for values extend to environments.

Lemma 17.3.3 (⊕ agrees with validity, for environments)
If dE Bk E1 ↪→ E2 then E1 ⊕ dE = E2. �

Lemma 17.3.4 (Downward-closure, for environments)
If N ≥ n, then dE BN E1 ↪→ E2 implies dE Bn E1 ↪→ E2. �

Finally, for both values, terms and environments, omitting the step count k from validity means
validity holds for all ks. That is, for instance, dv B v1 ↪→ v2 means dv Bk v1 ↪→ v2 for all k .

Soundness of di�erentiation

We can state a soundness theorem for di�erentiation without mentioning step-indexes. Instead of
proving it directly, we must �rst prove a more technical statement (Lemma 17.3.6) that mentions
step-indexes explicitly.

Theorem 17.3.5 (Soundness of di�erentiation in λAL)
If dE is a valid change environment from base environment E1 to updated environment E2, that is
dE B E1 ↪→ E2, and if t converges both in the base and updated environment, that is E1 ` t ⇓ v1 and
E2 ` t ⇓ v2, then D ιn t o evaluates under the change environment dE to a valid change dv between
base result v1 and updated result v2, that is dE ` D ιn t o ⇓ dv, dv B v1 ↪→ v2 and v1 ⊕ dv = v2. �

Lemma 17.3.6 (Fundamental Property)
For each n, if dE Bn E1 ↪→ E2 then (dE ` D ιn t o) In (E1 ` t) ↪→ (E2 ` t). �

17.3.4 The target language iλAL
In this section, we present the target language of a transformation that extends static di�erentiation
with CTS conversion. As said earlier, the functions of iλAL compute both their output and a cache,
which contains the intermediate values that contributed to that output. Derivatives receive this
cache and use it to compute changes without recomputing intermediate values; derivatives also
update the caches according to their input changes.
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Base terms
M ::= let y, cyfx = f x in M Call

| let y = (x) in Tuple
| (x, C) Result

Cache terms
C ::= • Empty

| C cyfx Sub-cache
| C x Cached value

Change terms
dM ::= let dy, cyfx = df dx cyfx in dM Call

| let dy = (dx) in dM Tuple
| (dx, dC) Result

Cache updates
dC ::= • Empty

| dC cyfx Sub-cache
| dC (x ⊕ dx) Updated value

Closed values
V ::= F [λx .M ] Closure

| (V ) Tuple
| ` Literal
| p Primitive

Cache values
Vc ::= • Empty

| Vc Vc Sub-cache
| Vc V Cached value

Change values
dV ::= dF[λdxC . dM ] Closure

| (dV ) Tuple
| d` Literal
| nil Nil
| !V Replacement

Base de�nitions
Dv ::= x = V Value de�nition

| cyfx = Vc Cache de�nition

Change de�nitions
dDv ::= Dv Base

| dx = dV Change
Evaluation environments

F ::= F ;Dv Binding
| • Empty

Change environments
dF ::= dF ; dDv Binding

| • Empty

Figure 17.6: Target language iλAL (syntax).

Syntax The syntax of iλAL is de�ned in Figure 17.6. Base terms of iλAL follow again λ-lifted
A’NF, like λAL , except that a let-binding for a function application f x now binds an extra cache
identi�er cyfx besides output y. Cache identi�ers have non-standard syntax: it can be seen as a triple
that refers to the value identi�ers f , x and y. Hence, an α-renaming of one of these three identi�ers
must refresh the cache identi�er accordingly. Result terms explicitly return cache C through syntax
(x,C).

The syntax for caches has three cases: a cache can be empty, or it can prepend a value or a cache
variable to a cache. In other words, a cache is a tree-like data structure which is isomorphic to an
execution trace containing both immediate values and the execution traces of the function calls
issued during the evaluation.

The syntax for change terms of iλAL witnesses the CTS discipline followed by the derivatives:
to determine dy, the derivative of f evaluated at point x with change dx expects the cache produced
by evaluating y in the base term. The derivative returns the updated cache which contains the
intermediate results that would be gathered by the evaluation of f (x ⊕ dx). The result term of every
change term returns a cache update dC in addition to the computed change.

The syntax for cache updates resembles the one for caches, but each value identi�er x of the
input cache is updated with its corresponding change dx.

Semantics An evaluation environment F of iλAL contains not only values but also cache values.
The syntax for values V includes closures, tuples, primitives and constants. The syntax for cache
values Vc mimics the one for cache terms. The evaluation of change terms expects the evaluation
environments dF to also include bindings for change values.

There are �ve kinds of change values: closure changes, tuple changes, literal changes, nil changes
and replacements. Closure changes embed an environment dF and a code pointer for a function,
waiting for both a base value x and a cache C . By abuse of notation, we reuse the same syntax C to
both deconstruct and construct caches. Other changes are similar to the ones found in λAL .

Base terms of the language are evaluated using a big-step semantics de�ned in Figure 17.7.
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Evaluation of base terms F ` M ⇓ (V ,Vc )

[TResult]
F (x) = V F ` C ⇓ Vc

F ` (x,C) ⇓ (V ,Vc )

[TTuple]
F ; y = F (x) ` M ⇓ (V ,Vc )

F ` let y = (x) in M ⇓ (V ,Vc )

[TClosureCall]
F (f ) = F ′[λx ′.M ′]

F ′; x ′ = F (x) ` M ′ ⇓ (V ′,V ′c )
F ; y = V ′; cyfx = V

′
c ` M ⇓ (V ,Vc )

F ` let y, cyfx = f x in M ⇓ (V ,Vc )

[TPrimitiveCall]
F (f ) = ` δ`(F (x)) = (V

′,V ′c ) F ; y = V ′; cyfx = V
′
c ` M ⇓ v

F ` let y, cyfx = f x in M ⇓ (V ,Vc )

Evaluation of caches F ` C ⇓ Vc

[TEmptyCache]

F ` • ⇓ •

[TCacheVar]
F (x) = V F ` C ⇓ Vc

F ` C x ⇓ Vc V

[TCacheSubCache]
F (c

y
fx ) = V

′
c F ` C ⇓ Vc

F ` C c
y
fx ⇓ Vc V

′
c

Figure 17.7: Target language iλAL (semantics of base terms and caches).

Judgment “F ` M ⇓ (V ,Vc )” is read “Under evaluation environment F , base term M evaluates to
value V and cache Vc ”. Auxiliary judgment “F ` C ⇓ Vc ” evaluates cache terms into cache values.
Rule [TResult] not only looks into the environment for the return value V but it also evaluates
the returned cache C . Rule [TTuple] is similar to the rule of the source language since no cache
is produced by the allocation of a tuple. Rule [TClosureCall] works exactly as [SClosureCall]
except that the cache value returned by the closure is bound to cache identi�er cyfx . In the same
way, [TPrimitiveCall] resembles [SPrimitiveCall] but also binds cyfx . Rule [TEmptyCache] evaluates
an empty cache term into an empty cache value. Rule [TCacheVar] computes the value of cache
termC x by appending the value of variable x to cache valueVc computed for cache termC . Similarly,
rule [TCacheSubCache] appends the cache value of a cache named cyfx to the cache valueVc computed
for C .

Change terms of the target language are also evaluated using a big-step semantics, de�ned in
Fig. 17.8. Judgment “dF ` dM ⇓ (dV ,Vc )” is read “Under evaluation environment F , change term dM
evaluates to change value dV and updated cache Vc ”. The �rst auxiliary judgment “dF ` dC ⇓ Vc ”
de�nes evaluation of cache update terms. We omit the rules for this judgment since it is similar
to the one for cache terms, except that cached values are computed by x ⊕ dx, not simply x. The
�nal auxiliary judgment “Vc ∼ C → dF” describes a limited form of pattern matching used by
CTS derivatives: namely, how a cache pattern C matches a cache value Vc to produce a change
environment dF .

Rule [TDResult] returns the �nal change value of a computation as well as a updated cache
resulting from the evaluation of the cache update term dC. Rule [TDTuple] resembles its counterpart
in the source language, but the tuple for y is not built as it has already been pushed in the environment
by the cache.

As for λAL , there are four rules to deal with let-bindings depending on the shape of the change
bound to df in the environment. If df is bound to a replacement, the rule [TDReplaceCall] applies.
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Evaluation of change terms dF ` dM ⇓ (dV ,Vc )

[TDResult]
dF(dx) = dV dF ` dC ⇓ Vc

dF ` (dx, dC) ⇓ (dV ,Vc )

[TDTuple]
dF ; dy = dF(dx) ` dM ⇓ (dV ,Vc )

dF ` let dy = (dx) in dM(dV ,Vc ) ⇓

[TDReplaceCall]
dF(df ) =!Vf

bdFc2 ` @(f , x) ⇓ (V ′,V ′c )
dF ; dy =!V ′; cyfx = V

′
c ` dM ⇓ (dV ,Vc )

dF ` let dy, cyfx = df dx c
y
fx in dM ⇓ (dV ,Vc )

[TDClosureNil]
dF(f , df ) = dF f [λx .Mf ],nil

dF f ; x = bdFc2(x) ` Mf ⇓ (V
′
y ,V
′
c )

dF ; dy =!Vy ′; c
y
fx = V

′
c ` dM ⇓ (dV ,Vc )

dF ` let dy, cyfx = df dx c
y
fx in dM ⇓ (dV ,Vc )

[TDPrimitiveNil]
dF(f , df ) = p,nil dF(x, dx) = Vx , dV x dE; dy, cyfx = ∆p(Vx , dV x , dF(c

y
fx )) ` dM ⇓ (dV ,Vc )

dF ` let dy, cyfx = df dx c
y
fx in dM ⇓ (dV ,Vc )

[TDClosureChange]
dF(df ) = dF f [λdxC .dMf ] dF(cyfx ) ∼ C → dF ′

dF f ; dx = dF(dx); dF ′ ` dMf ⇓ (dV y ,V
′
c ) dF ; dy = dV y , c

y
fx = V

′
c ` dM ⇓ (dV ,Vc )

dF ` let dy, cyfx = df dx c
y
fx in dM ⇓ (dV ,Vc )

Binding of caches Vc ∼ C → dF

[TMatchEmptyCache]

• ∼ • → •

[TMatchCachedValue]
Vc ∼ C → dF

Vc V ∼ C x → dF ; (x = V )

[TMatchSubCache]
Vc ∼ C → dF

Vc V
′
c ∼ C c

y
fx → dF ; (cyfx = V

′
c )

Figure 17.8: Target language iλAL (semantics of change terms and cache updates).
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CTS translation of toplevel de�nitions C n f = λx . t o
C n f = λx . t o = f = λx .M,

df = λdxC .D• (x⊕dx)n t o
where (C,M) = C• xn t o

CTS di�erentiation of terms DdCn t o
DdCn let y = f x in t o = n let dy, cyfx = df dx cyfx in M o

where M = D(dC (y⊕dy) cyfx )
n t o

DdCn let y = (x) in t o = n let dy = (dx) in M o
where M = D(dC (y⊕dy))n t o

DdCn x o = n (dx, dC) o

CTS translation of terms CCn t o
CCn let y = f x in t o = (C ′, n let y, cyfx = f x in M o)

where (C ′,M) = C(C y cyfx )
n t o

CCn let y = (x) in t o = (C ′, n let y = (x) in M o)
where (C ′,M) = C(C y)n t o

CCn x o = (C, n (x,C) o)

Figure 17.9: Cache-Transfer Style (CTS) conversion from λAL to iλAL .

In that case, we reevaluate the function call in the updated environment bdFc2 (de�ned similarly as
in the source language). This evaluation leads to a new value V ′ which replaces the original one as
well as an updated cache for cyfx .

If df is bound to a nil change and f is bound to a closure, the rule [TDClosureNil] applies. This
rule mimicks again its counterpart in the source language passing with the di�erence that only the
resulting change and the updated cache are bound in the environment.

If df is bound to a nil change and f is bound to primitive p, the rule [TDPrimitiveNil] applies.
The derivative of p is invoked with the value of x, its change value and the cache of the original call
to p. The semantics of p’s derivative is given by builtin function ∆p(–), as in the source language.

If df is bound to a closure change and f is bound to a closure, the rule [TDClosureNil] applies.
The body of the closure change is evaluated under the closure change environment extended with
the value of the formal argument dx and with the environment resulting from the binding of the
original cache value to the variables occuring in the cache C . This evaluation leads to a change and
an updated cache bound in the environment to continue with the evaluation of the rest of the term.

17.3.5 CTS conversion from λAL to iλAL

CTS conversion from λAL to iλAL is de�ned in Figure 17.9. It comprises CTS di�erentiation Dn – o,
from λAL base terms to iλAL change terms, and CTS translation C n – o, from λAL to iλAL , which is
overloaded over top-level de�nitions C n f = λx . t o and terms CCn t o.

By the �rst rule, C n – o maps each source toplevel de�nition “f = λx . t” to the compiled code
of the function f and to the derivative df of f expressed in the target language iλAL . These target
de�nitions are generated by a �rst call to the compilation function C• xn t o: it returns both M , the
compiled body of f and the cache term C which contains the names of the intermediate values
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CTS translation of values C nv o
C nE[λx . t] o = C nE o[λx .M]

where (C,M) = C• xn t o

C n ` o = `

CTS translation of change values C n dv o
C ndE[λx dx .Dιn t o] o = C ndE o[λdxC .D• (x⊕dx)n t o]

where (C,M) = C• xn t o

C n !v o = !C nv o
C nd` o = d`

CTS translation of value environments C nE o
C n • o = •

C nE; x = v o = C nE o; x = C nv o

CTS translation of change environments C ndE o
C n • o = •

C ndE; x = v, dx = dv o = C ndE o; x = C nv o, dx = C n dv o

Figure 17.10: Extending CTS translation to values, change values, environments and change envi-
ronments.

computed by the evaluation of M . This cache term C is used as a cache pattern to de�ne the second
argument of the derivative of f . That way, we make sure that the shape of the cache expected
by df is consistent with the shape of the cache produced by f . Derivative body df is computed by
derivation call D• (x⊕dx)n t o.

CTS translation on terms, CCn t o, accepts a term t and a cache term C . This cache is a fragment
of output code: in tail position (t = x), it generates code to return both the result x and the cache C .
When the transformation visits let-bindings, it outputs extra bindings for caches cyfx , and appends
all variables newly bound in the output to the cache used when visiting the let-body.

Similarly to CCn t o, CTS derivation DdCn t o accepts a cache update dC to return in tail position.
While cache terms record intermediate results, cache updates record result updates. For let-bindings,
to update y by change dy, CTS derivation appends to dC term y ⊕ dy to replace y.

17.3.6 Soundness of CTS conversion
In this section, we outline de�nitions and main lemmas needed to prove CTS conversion sound. The
proof is based on a mostly straightforward simulation in lock-step, but two subtle points emerge.
First, we must relate λAL environments that do not contain caches, with iλAL environments that do.
Second, while evaluating CTS derivatives, the evaluation environment mixes caches from the base
computation and updated caches computed by the derivatives.

Evaluation commutes with CTS conversion Figure 17.10 extends CTS translation to values,
change values, environments and change environments. CTS translation of base terms commutes
with our semantics:
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dF ↑ • {i dF
dF ↑ C {i dF′

dF ↑ C x {i dF′
dF ↑ C {i dF′ bdF ci ` let y, c

y
fx = f x in (y, cyfx ) ⇓ (_, Vc )

dF ↑ C cyfx {i dF′; cyfx = Vc

Figure 17.11: Extension of an environment with cache values dF ↑ C {i dF ′ (for i = 1, 2).

Lemma 17.3.7 (Evaluation commutes with CTS translation)
For all E, t and v , such that E ` t ⇓ v , and for all C , there exists Vc , C nE o ` CCn t o ⇓ (C nv o,Vc ).�

Stating a corresponding lemma for CTS translation of derived terms is trickier. If the derivative
of t evaluates correctly in some environment (that is dE ` D ιn t o ⇓ dv), CTS derivative DdCn t o can-
not be evaluated in environment C ndE o. A CTS derivative can only evaluate against environments
containing cache values from the base computation, but no cache values appear in C ndE o!

As a �x, we enrich C ndE o with the values of a cache C , using the pair of judgments dF ↑ C {i
dF ′ (for i = 1, 2) de�ned in Fig. 17.11. Judgment dF ↑ C {i dF ′ (for i = 1, 2) is read “Target change
environment dF ′ extends dF with the original (for i = 1) (or updated, for i = 2) values of cache C .”
Since C is essentially a list of variables containing no values, cache values in dF ′ must be computed
from bdFci .

Lemma 17.3.8 (Evaluation commutes with CTS di�erentiation)
LetC be such that (C, _) = C•n t o. For all dE, t and dv, if dE ` D ιn t o ⇓ dv, and C ndE o ↑ C {1 dF ,
then dF ` DdCn t o ⇓ (C n dv o,Vc ). �

The proof of this lemma is not immediate, since during the evaluation of DdCn t o the new caches
replace the old caches. In our Coq development, we enforce a physical separation between the part
of the environment containing old caches and the one containing new caches, and we maintain the
invariant that the second part of the environment corresponds to the remaining part of the term.

Soundness of CTS conversion Finally, we can state soundness of CTS di�erentiation relative
to di�erentiation. The theorem says that (a) the CTS derivative DCn t o computes the CTS transla-
tion C n dv o of the change computed by the standard derivative D ιn t o; (b) the updated cache Vc2
produced by the CTS derivative coincides with the cache produced by the CTS-translated base term
M in the updated environment bdF2c2. We must use bdF2c2 instead of dF2 to evaluate CTS-translated
base term M since dF2, produced by environment extension, contains updated caches, changes and
original values. Since we require a correct cache via condition (b), we can use this cache to invoke
the CTS derivative on further changes, as described in Sec. 17.2.2.

Theorem 17.3.9 (Soundness of CTS di�erentiation wrt di�erentiation)
Let C and M be such that (C,M) = C•n t o. For all dE, t and dv such that dE ` D ιn t o ⇓ dv and for
all dF1 and dF2 such that

C ndE o ↑ C {1 dF1
C ndE o ↑ C {2 dF2
bdF1c1 ` M ⇓ (V1,Vc1)
bdF2c2 ` M ⇓ (V2,Vc2)

we have
dF1 ` DCn t o ⇓ (C n dv o,Vc2). �
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17.4 Incrementalization case studies
.

In this section, we investigate whether our transformations incrementalize e�ciently programs
in a typed language such as Haskell. And indeed, after providing support for the needed bulk
operations on sequences, bags and maps, we successfully transform a few case studies and obtain
e�cient incremental programs, that is ones for which incremental computation is faster than from
scratch recomputation.

We type CTS programs by by associating to each function f a cache type FC. We can transform
programs that use higher-order functions by making closure construction explicit.

We illustrate those points on three case studies: average computation over bags of integers, a
nested loop over two sequences and a more involved example inspired by Koch et al.’s work on
incrementalizing database queries.

In all cases, we con�rm that results are consistent between from scratch recomputation and
incremental evaluation.

Our benchmarks were compiled by GHC 8.0.2. They were run on a 2.60GHz dual core Intel
i7-6600U CPU with 12GB of RAM running Ubuntu 16.04.

17.4.1 Averaging integers bags
Section Sec. 17.2.2 motivates our transformation with a running example of computing the average
over a bag of integers. We represent bags as maps from elements to (possibly negative) multiplicities.
Earlier work [Cai et al., 2014; Koch et al., 2014] represents bag changes as bags of removed and
added elements: to update element a with change da, one removes a and adds a ⊕ da. Instead, our
bag changes contain element changes: a valid bag change is either a replacement change (with a
new bag) or a list of atomic changes. An atomic change contains an element a, a valid change for
that element da, a multiplicity n and a change to that multiplicity dn. Updating a bag with an atomic
change means removing n occurrences of a and inserting n ⊕ dn occurrences of updated element
a ⊕ da.

type Bag a = Map a Z
type ∆(Bag a) = Replace (Bag a) | Ch [AtomicChange a]
data AtomicChange a = AtomicChange a (∆a) Z (∆Z)

This change type enables both users and derivatives to express e�ciently various bag changes,
such as inserting a single element or changing a single element, but also changing some but not all
occurrences of an element in a bag.

insertSingle :: a→ ∆(Bag a)
insertSingle a = Ch [AtomicChange a 0a 0 (Ch 1)]
changeSingle :: a→ ∆a→ ∆(Bag a)
changeSingle a da = Ch [AtomicChange a da 1 01 ]

Based on this change structure, we provide e�cient primitives and their derivatives. The CTS
variant of map, that we call mapC takes a function fC in CTS and a bag as and produces a bag and
a cache. Because map is not self-maintainable the cache stores the arguments fC and as. In addition
the cache stores for each invocation of fC, and therefore for each distinct element in as, the result
of fC of type b and the cache of type c. The incremental function dmapC has to produce an updated
cache. We check that this is the same cache that mapC would produce when applied to updated
inputs using the QuickCheck library.
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Following ideas inspired by Rossberg et al. [2010], all higher-order functions (and typically, also
their caches) are parametric over cache types of their function arguments. Here, functions mapC
and dmapC and cache type MapC are parametric over the cache type c of fC and dfC.

map :: (a→ b) → Bag a→ Bag b
type MapC a b c = (a→ (b, c),Bag a,Map a (b, c))
mapC :: (a→ (b, c)) → Bag a→ (Bag b,MapC a b c)
dmapC :: (∆a→ c → (∆b, c)) → ∆(Bag a) →
MapC a b c → (∆(Bag b),MapC a b c)

We wrote the length and sum function used in our benchmarks in terms of primitives map
and foldGroup. We applied our transformations to get lengthC, dlengthC, sumC and dsumC. This
transformation could in principle be automated. Implementing the CTS variant and CTS derivative
of primitives e�ciently requires manual work.

We evaluate whether we can produce an updated result with davgC faster than by from scratch
recomputation with avg. We use the criterion library for benchmarking. The benchmarking code
and our raw results are available in the supplementarty material. We �x an initial bag of size n. It
contains the integers from 1 to n. We de�ne a sequence of consecutive changes of length r as the
insertion of 1, the deletion of 1, the insertion of 2, the deletion of 2 and so on. We update the initial
bag with these changes, one after another, to obtain a sequence of input bags.

We measure the time taken by from scratch recomputation. We apply avg to each input bag
in the sequence and fully force all results. We report the time from scratch recomputation takes
as this measured time divided by the number r of input bags. We measure the time taken by our
CTS variant avgC similarly. We make sure to fully force all results and caches avgC produces on
the sequence of input bags.

We measure the time taken by our CTS derivative davgC. We assume a fully forced initial result
and cache. We apply davgC to each change in the sequence of bag changes using the cache from
the previous invocation. We then apply the result change to the previous result. We fully force the
obtained sequence of results. Finally we measure the time taken to only produce the sequence of
result changes without applying them.

Because of laziness, choosing what exactly to measure is tricky. We ensure that reported times
include the entire cost of computing the whole sequence of results. To measure this cost, we ensure
any thunks within the sequence are forced. We need not force any partial results, such as output
changes or caches. Doing so would distort the results because forcing the whole cache can cost
asymptotically more than running derivatives. However, not using the cache at all underestimates
the cost of incremental computation. Hence, we measure a sequence of consecutive updates, each
using the cache produced by the previous one.

The plot in Fig. 17.12a shows execution time versus the size n of the initial input. To produce the
initial result and cache, avgC takes longer than the original avg function takes to produce just the
result. This is to be expected. Producing the result incrementally is much faster than from scratch
recomputation. This speedup increases with the size of the initial bag. For an initial bag size of 800
incrementally updating the result is 70 times faster than from scratch recomputation.

The di�erence between only producing the output change versus producing the output change
and updating the result is very small in this example. This is to be expected because in this example
the result is an integer and updating and evaluating an integer is fast. We will see an example where
there is a bigger di�erence between the two.
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(b) Benchmark results for totalPrice

17.4.2 Nested loops over two sequences
We implemented incremental sequences and related primitives following Firsov and Jeltsch [2016]:
our change operations and �rst-order operations (such as concat) reuse their implementation. On
the other hand, we must extend higher-order operations such as map to handle non-nil function
changes and caching. A correct and e�cient CTS incremental dmapC function has to work di�erently
depending on whether the given function change is nil or not: For a non-nil function change it has
to go over the input sequence; for a nil function change it can avoid that.

Consider the running example again, this time in A’NF. The partial application of a lambda
lifted function constructs a closure. We made that explicit with a closure function.

cartesianProduct xs ys = let
mapPairYs = closure mapPair ys
xys = concatMap mapPairYs xs
in xys

mapPair ys = λx → let
pairX = closure pair x
xys = map pairX ys
in xys

While the only valid change for closed functions is their nil change, for closures we can have
non-nil function changes. We represent closed functions and closures as variants of the same type.
Correspondingly we represent changes to a closed function and changes to a closure as variants
of the same type of function changes. We inspect this representation at runtime to �nd out if a
function change is a nil change.

data Fun a b c where
Closed :: (a→ (b, c)) → Fun a b c
Closure :: (e→ a→ (b, c)) → e→ Fun a b c

data ∆(Fun a b c) where
DClosed :: (∆a→ c → (∆b, c)) → ∆(Fun a b c)
DClosure :: (∆e→ ∆a→ c → (∆b, c)) → ∆e→ ∆(Fun a b c)
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(b) Benchmark results for Cartesian product changing
outer sequence.

We have also evaluated another representation of function changes with di�erent tradeo�s where
we use defunctionalization instead of closure conversion. We discuss the use of defunctionalization
in Appendix D.

We use the same benchmark setup as in the benchmark for the average computation on bags.
The input for size n is a pair of sequences (xs, ys). Each sequence initially contains the integers from
1 to n. Updating the result in reaction to a change dxs to xs takes less time than updating the result
in reaction to a change dys to ys. The reason is that when dys is a nil change we dynamically detect
that the function change passed to dconcatMapc is the nil change and avoid looping over xs entirely.

We benchmark changes to the outer sequence xs and the inner sequence ys separately. In both
cases the sequence of changes are insertions and deletions of di�erent numbers at di�erent positions.
When we benchmark changes to the outer sequence xs we take this sequence of changes for xs and
all changes to ys will be nil changes. When we benchmark changes to the inner sequence ys we
take this sequence of changes for ys and all changes to xs will be nil changes.

In this example preparing the cache takes much longer than from scratch recomputation. The
speedup of incremental computation over from scratch recomputation increases with the size of
the initial sequences. It reaches 2.5 for a change to the inner sequences and 8.8 for a change to
the outer sequence when the initial sequences have size 800. Producing and fully forcing only the
changes to the results is 5 times faster for a change to the inner sequence and 370 times faster for a
change to the outer sequence.

While we do get speedups for both kinds of changes (to the inner and to the outer sequence)
the speedups for changes to the outer sequence are bigger. Due to our benchmark methodology we
have to fully force updated results. This alone takes time quadratic in the size of the input sequences
n. Threrefore we also report the time it takes to produce and fully force only the output changes
which is of a lower time complexity.

17.4.3 Indexed joins of two bags

As expected, we found that we can compose functions into larger and more complex programs and
apply CTS di�erentiation to get a fast incremental program.

For this example imagine we have a bag of orders and a bag of line items. An order is a pair of
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an integer key and an exchange rate represented as an integer. A line item is a pair of a key of a
corresponding order and a price represented as an integer. The price of an order is the sum of the
prices of the corresponding line items multiplied by the exchange rate. We want to �nd the total
price de�ned as the sum of the prices of all orders.

To do so e�ciently we build an index for line items and an index for orders. We represent
indexes as maps. We build a map from order key to the sum of the prices of corresponding line
items. Because orders are not necessarily unique by key and because multiplication distributes
over addition we can build an index mapping each order key to the sum of all exchange rates for
this order key. We then compute the total price by merging the two maps by key, multiplying
corresponding sums of exchange rates and sums of prices. We compute the total price as the sum of
those products.

Because our indexes are maps we need a change structure for maps. We generalize the change
structure for bags by generalizing from multiplicities to arbitrary values as long as they have a
group structure. A change to a map is either a replacement change (with a new map) or a list of
atomic changes. An atomic change is a key k, a valid change to that key dk, a value a and a valid
change to that value da. To update a map with an atomic change means to use the group structure
of the type of a to subtract a at key k and to add a ⊕ da at key k ⊕ dk.

type ∆(Map k a) = Replace (Map k a) | Ch [AtomicChange k a]
data AtomicChange k a = AtomicChange k (∆k) a (∆a)

Bags have a group structure as long as the elements have a group structure. Maps have a group
structure as long as the values have a group structure. This means for example that we can e�ciently
incrementalize programs on maps from keys to bags of elements. We implemented e�cient caching
and incremental primitives for maps and veri�ed their correctness with QuickCheck.

To build the indexes, we use a groupBy function built from primitive functions foldMapGroup on
bags and singleton for bags and maps respectively. While computing the indexes with groupBy is self-
maintainable, merging them is not. We need to cache and incrementally update the intermediately
created indexes to avoid recomputing them.

type Order = (Z,Z)
type LineItem = (Z,Z)
totalPrice :: Bag Order → Bag LineItem→ Z
totalPrice orders lineItems = let

orderIndex = groupBy fst orders
orderSumIndex = Map.map (Bag.foldMapGroup snd) orderIndex
lineItemIndex = groupBy fst lineItems
lineItemSumIndex = Map.map (Bag.foldMapGroup snd) lineItemIndex
merged = Map.merge orderSumIndex lineItemSumIndex
total = Map.foldMapGroup multiply merged
in total

This example is inspired by Koch et al. [2014]. Unlike them, we don’t automate indexing, so to
get good performance we start from a program that explicitly uses indexes.

We evaluate the performace in the same way we did for the average computation on bags. The
initial input of size n is a pair of bags where both contain the pairs (i, i) for i between 1 and n. The
sequence of changes are alternations between insertion and deletion of pairs (j, j) for di�erent j. We
alternate the insertions and deletions between the orders bag and the line items bag.

Our CTS derivative of the original program produces updated results much faster than from
scratch recomputation and again the speedup increases with the size of the initial bags. For an
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initial size of the two bags of 800 incrementally updating the result is 180 times faster than from
scratch recomputation.

17.5 Limitations and future work
In this section we describe limitations to be addressed in future work.

17.5.1 Hiding the cache type
In our experiments, functions of the same type f1, f2 :: A→ B can be transformed to CTS functions
f1 :: A→ (B,C1), f2 :: A→ (B,C2) with di�erent cache types C1,C2, since cache types depend on
the implementation. We can �x this problem with some runtime overhead by using a single cache
type Cache, de�ned as a tagged union of all cache types. If we defunctionalize function changes, we
can index this cache type with tags representing functions, but other approaches are possible and
we omit details. We conjecture (but have not proven) this �x gives a type-preserving translation,
but leave this question for future work.

17.5.2 Nested bags
Our implementation of bags makes nested bags overly slow: we represent bags as tree-based maps
from elements to multiplicity, so looking up a bag b in a bag of bags takes time proportional to the
size of b. Possible solutions in this case include shredding, like done by [Koch et al., 2016]. We have
no such problem for nested sequences, or other nested data which can be addressed in O(1).

17.5.3 Proper tail calls
CTS transformation con�icts with proper tail calls, as it turns most tail calls into non-tail calls.
In A′NF syntax, tail calls such as let y = f x in g y become let y = f x in let z = g y in z,
and in CTS that becomes let (y, cy) = f x in let (z, cz) = g y in (z, (cy, cz)), where the call to
g is genuinely not in tail position. This prevents recursion on deeply nested data structures like
long lists: but such programs incrementalize ine�ciently if deeply nested data is a�ected, so it is
advisable to replace lists by other sequences anyway. It’s unclear whether such �xes are available
for other uses of tail calls.

17.5.4 Pervasive replacement values
Thanks to replacement changes, we can compute a change from any v1 to any v2 in constant time.
Cai et al. [2014] use a di�erence operator 	 instead, but it’s hard to implement 	 in constant
time on values of non-constant size. So our formalization and implementation allow replacement
values everywhere to ensure all computations can be incrementalized in some sense. Supporting
replacement changes introduces overhead even if they are not used, because it prevents writing
self-maintainable CTS derivatives. Hence, to improve performance, one should consider dropping
support for replacement values and restricting supported computations. Consider a call to a binary
CTS derivative dfc da db c1 after computing (y1, c1) = fc a1 b1: if db is a replacement change !b2,
then dfc must compute a result afresh by invoking fc a2 b2, and a2 = a1 ⊕ da requires remembering
previous input a1 inside c1. By the same argument, c1 must also remember input b1. Worse,
replacement values are only needed to handle cases where incremental computation reduces to
recomputation, because the new input is completely di�erent, or because the condition of an if
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expression changed. Such changes to conditions are forbidden by other works [Koch et al., 2016],
we believe for similar reasons.

17.5.5 Recomputing updated values

In some cases, the same updated input might be recomputed more than once. If a derivative df
needs some base input x (that is, if df is not self-maintainable), df ’s input cache will contain a copy
of x, and df ’s output cache will contain its updated value x ⊕ dx. When all or most derivatives
are self-maintainable this is convenient, because in most cases updated inputs will not need to
be computed. But if most derivatives are not self-maintainable, the same updated input might be
computed multiple times: speci�cally, if derivative dh calls functions df and dg, and both df and dg
need the same base input x, caches for both df and dg will contain the updated value of x ⊕ dx,
computed independently. Worse, because of pervasive replacement values (Sec. 17.5.4), derivatives
in our case studies tend to not be self-maintainable.

In some cases, such repeated updates should be removable by a standard optimizer after inlining
and common-subexpression elimination, but it is unclear how often this happens. To solve this
problem, derivatives could take and return both old inputs x1 and updated ones x2 = x1 ⊕ dx, and
x2 could be computed at the single location where dx is bound. In this case, to avoid updates for
unused base inputs we would have to rely more on absence analysis (Sec. 17.5.6); pruning function
inputs appears easier than pruning caches. Otherwise, computations of updated inputs that are not
used, in a lazy context, might cause space leaks, where thunks for x2 = x1 ⊕ dx1, x3 = x2 ⊕ dx2 and
so on might accumulate and grow without bounds.

17.5.6 Cache pruning via absence analysis

To reduce memory usage and runtime overhead, it should be possible to automatically remove
from transformed programs any caches or cache fragments that are not used (directly or indirectly)
to compute outputs. Liu [2000] performs this transformation on CTS programs by using absence
analysis, which was later extended to higher-order languages by Sergey et al. [2014]. In lazy
languages, absence analysis removes thunks that are not needed to compute the output. We
conjecture that, as long as the analysis is extended to not treat caches as part of the output, it should
be able to remove unused caches or inputs (assuming unused inputs exist, see Sec. 17.5.4).

17.5.7 Unary vs n-ary abstraction

We only show our transformation correct for unary functions and tuples. But many languages
provide e�cient support for applying curried functions such as div :: Z→ Z→ Z, via either the
push-enter or eval-apply evaluation model. For instance, invoking div m n should not require the
overhead of a function invocation for each argument [Marlow and Jones, 2006]. Naively transforming
such a curried functions to CTS would produce a function divc of typeZ→ (Z→ (Z,DivC2)),DivC1)
with DivC1 = (), which adds excessive overhead.3 Based on preliminary experiments, we believe we
can straightforwardly combine our approach with a push-enter or eval-apply evaluation strategy
for transformed curried functions. Alternatively, we expect that translating Haskell to Strict
Core [Bolingbroke and Peyton Jones, 2009] would take care of turning Haskell into a language
where function types describe their arity, which our transformation can easily take care of. We
leave a more proper investigation for future work.

3In Sec. 17.2 and our evaluation we use curried functions and never need to use this naive encoding, but only because we
always invoke functions of known arity.
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17.6 Related work
Of all research on incremental computation in both programming languages and databases [Gupta
and Mumick, 1999; Ramalingam and Reps, 1993], we discuss the most closely related works. Other
related work, more closely to cache-transfer style, is discussed in Chapter 19.

Previouswork on cache-transfer-style Liu [2000]’s work has been the fundamental inspiration
to this work, but her approach has no correctness proof and is restricted to a �rst-order untyped
language (in part because no absence analysis for higher-order languages was available). Moreover,
while the idea of cache-transfer-style is similar, it’s unclear if her approach to incrementalization
would extend to higher-order programs.

Firsov and Jeltsch [2016] also approach incrementalization by code transformation, but their
approach does not deal with changes to functions. Instead of transforming functions written in
terms of primitives, they provide combinators to write CTS functions and derivatives together.
On the other hand, they extend their approach to support mutable caches, while restricting to
immutable ones as we do might lead to a logarithmic slowdown.

Finite di�erencing Incremental computation on collections or databases by �nite di�erencing
has a long tradition [Paige and Koenig, 1982; Blakeley et al., 1986]. The most recent and impressive
line of work is the one on DBToaster [Koch, 2010; Koch et al., 2014], which is a highly e�cient
approach to incrementalize queries over bags by combining iterated �nite di�erencing with other
program transformations. They show asymptotic speedups both in theory and through experimental
evaluations. Changes are only allowed for datatypes that form groups (such as bags or certain
maps), but not for instance for lists or sets. Similar ideas were recently extended to higher-order
and nested computation [Koch et al., 2016], though still restricted to datatypes that can be turned
into groups.

Logical relations To study correctness of incremental programs we use a logical relation among
initial values v1, updated values v2 and changes dv. To de�ne a logical relation for an untyped
λ-calculus we use a step-indexed logical relation, following [Appel and McAllester, 2001; Ahmed,
2006]; in particular, our de�nitions are closest to the ones by Acar et al. [2008], who also works
with an untyped language, big-step semantics and (a di�erent form of) incremental computation.
However, their logical relation does not mention changes explicitly, since they do not have �rst-class
status in their system. Moreover, we use environments rather than substitution, and use a slightly
di�erent step-indexing for our semantics.

Dynamic incrementalization The approaches to incremental computation with the widest
applicability are in the family of self-adjusting computation [Acar, 2005, 2009], including its descen-
dant Adapton [Hammer et al., 2014]. These approaches incrementalize programs by combining
memoization and change propagation: after creating a trace of base computations, updated inputs
are compared with old ones in O(1) to �nd corresponding outputs, which are updated to account
for input modi�cations. Compared to self-adjusting computation, Adapton only updates results
when they are demanded. As usual, incrementalization is not e�cient on arbitrary programs. To
incrementalize e�ciently a program must be designed so that input changes produce small changes
to the computation trace; re�nement type systems have been designed to assist in this task [Çiçek
et al., 2016; Hammer et al., 2016]. Instead of comparing inputs by pointer equality, Nominal Adap-
ton [Hammer et al., 2015] introduces �rst-class labels to identify matching inputs, enabling reuse in
more situations.
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Recording traces has often signi�cant overheads in both space and time (slowdowns of 20-30×
are common), though Acar et al. [2010] alleviate that by with datatype-speci�c support for tracing
higher-level operations, while Chen et al. [2014] reduce that overhead by optimizing traces to not
record redundant entries, and by logging chunks of operations at once, which reduces memory
overhead but also potential speedups.

17.7 Chapter conclusion
We have presented a program transformation which turns a functional program into its derivative
and e�ciently shares redundant computations between them thanks to a statically computed cache.
Although our �rst practical case studies show promising results, it remains now to integrate this
transformation into a realistic compiler.



Chapter 18

Towards di�erentiation for System
F

Di�erentiation is closely related to both logical relations and parametricity, as noticed by various
authors in discussions of di�erentiation. Appendix C presents novel proofs of ILC correctness
by adapting some logical relation techniques. As a demonstration, we de�ne in this chapter
di�erentiation for System F, by adapting results about parametricity. We stop short of a full proof
that this generalization is correct, but we have implemented and tested it on a mature implementation
of a System F typechecker; we believe the proof will mostly be a straightforward adaptation of
existing ones about parametricity, but we leave veri�cation for future work. A key open issue is
discussed in Remark 18.2.1.

History and motivation Various authors noticed that di�erentiation appears related to (binary)
parametricity (including Atkey [2015]). In particular, it resembles a transformation presented by
Bernardy and Lasson [2011] for arbitrary PTSs.1 By analogy with unary parametricity, Yufei Cai
sketched an extension of di�erentiation for arbitrary PTSs, but many questions remained open, and
at the time our correctness proof for ILC was signi�cantly more involved and trickier to extend to
System F, since it was de�ned in terms of denotational equivalence. Later, we reduced the proof
core to de�ning a logical relation, proving its fundamental property and a few corollaries, as shown
in Chapter 12, Extending this logical relation to System F proved comparably more straightforward.

Parametricity versus ILC Both parametricity and ILC de�ne logical relations across program
executions on di�erent inputs. When studying parametricity, di�erences are only allowed in the
implementations of abstractions (through abstract types or other mechanisms). To be related,
di�erent implementations of the same abstraction must give results that are equivalent according to
the calling program. Indeed, parametricity de�nes not just a logical relation but a logical equivalence,
that can be shown to be equivalent to contextual equivalence (as explained for instance by Harper
[2016, Ch. 48] or by Ahmed [2006]).

When studying ILC, logical equivalence between terms t1 and t2 (written (t1, t2) ∈ P nτ o),
appears to be generalized by the existence of a valid change de between t1 and t2 (that is, dt B t1 ↪→
t2 : τ ). As in earlier chapters, if terms e1 and e2 are equivalent, any valid change dt between them is
a nil change, but validity allows describing other changes.

1Bernardy and Lasson were not the �rst to introduce such a transformation. But most earlier work focuses on System F,
and our presentation follows theirs and uses their added generality. We refer for details to existing discussions of related
work [Wadler, 2007; Bernardy and Lasson, 2011].
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18.1 The parametricity transformation
First, we show a variant of their parametricity transformation, adapted to a variant of STLC without
base types but with type variables. Presenting λ→ using type variables will help when we come
back to System F, and allows discussing parametricity on STLC. This transformation is based on the
presentation of STLC as calculus λ→, a Pure Type System (PTS) [Barendregt, 1992, Sec. 5.2].

Background In PTSs, terms and types form a single syntactic category, but are distinguished
through an extended typing judgement (written Γ ` t : t) using additional terms called sorts.
Function types σ → τ are generalized by Π-type Πx : s. t, where x can in general appear free in t, a
generalization of Π-types in dependently-typed languages, but also of universal types ∀X . T in the
System F family; if x does not appear free in t, we write s→ t. Typing restricts whether terms of
some sort s1 can abstract over terms of sort s2; di�erent PTSs allow di�erent combinations of sorts
s1 and s2 (speci�ed by relations R ), but lots of metatheory for PTSs is parameterized over the choice
of combinations. In STLC presented as a PTS, there is an additional sort ?; those terms τ such that
` τ : ? are types.2 We do not intend to give a full introduction to PTSs, only to introduce what’s
strictly needed for our presentation, and refer the readers to existing presentations [Barendregt,
1992].

Instead of base types, λ→ use uninterpreted type variables α , but do not allow terms to bind
them. Nevertheless, we can write open terms, free in type variables for, say, naturals, and term
variables for operations on naturals. STLC restricts Π-types Πx : A. B to the usual arrow types
A→ B through R : one can show that in Πx : A. B, variable x cannot occur free in B.

Parametricity Bernardy and Lasson show how to transform a typed term Γ ` t : τ in a strongly
normalizing PTS P into a proof that t satis�es a parametricity statement for τ . The proof is in a
logic represented by PTS P2. PTS P2 is constructed uniformly from P , and is strongly normalizing
whenever P is. When the base PTS P is λ→, Bernardy and Lasson’s transformation produces terms
in a PTS λ2→, produced by transforming λ→. PTS λ2→ extends λ→ with a separate sort d?e of
propositions, together with enough abstraction power to abstract propositions over values. Like
λ→, λ2→ uses uninterpreted type variables α and does not allow abstracting over them.

In parametricity statements about λ→, we write (t1, t2) ∈ P nτ o for a proposition (hence, living
in d?e) that states that t1 and t2 are related. This proposition is de�ned, as usual, via a logical relation.
We write dxx for a proof that x1 and x2 are related. For type variables α , transformed terms abstract
over an arbitrary relation R α between α1 and α2. When α is instantiated by τ , R α can (but does
not have to) be instantiated with relation (–, –) ∈ P nτ o, but R α abstracts over arbitrary candidate
relations (similar to the notion of reducibility candidates [Girard et al., 1989, Ch. 14.1.1]). Allowing
alternative instantiations makes parametricity statements more powerful, and it is also necessary to
de�ne parametricity for impredicative type systems (like System F) in a predicative ambient logic.3

A transformed term P n t o relates two executions of terms t in di�erent environments: it can be
read as a proof that term t maps related inputs to related outputs. The proof strategy that P n t o
uses is the standard one for proving fundamental properties of logical relations; but instead of
doing a proof in the metalevel logic (by induction on terms and typing derivations), λ2→ serves as
an object-level logic, and P n – o generates proof terms in this logic by recursion on terms. At the
metalevel, Bernardy and Lasson, Th. 3 prove that for any well-typed term Γ ` t : τ , proof P n t o

2Calculus λ→ has also a sort � such that ` ? : �, but � itself has no type. Such a sort appears only in PTS typing
derivations, not in well-typed terms themselves, so we do not discuss it further.

3Speci�cally, if we require R α to be instantiated with the logical relation itself for τ when α is instantiated with τ , the
de�nition becomes circular. Consider the de�nition of (t1, t2) ∈ P n ∀α . τ o: type variable α can be instantiated with the
same type ∀α . τ , so the de�nition of (t1, t2) ∈ P n ∀α . τ o becomes impredicative.
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shows that t satis�es the parametricity statement for type τ given the hypotheses P n Γ o (or more
formally, P n Γ o ` P n t o : (S1 n t o , S2 n t o) ∈ P nτ o).

(f1, f2) ∈ P nσ → τ o = Π(x1 : S1 nσ o) (x2 : S2 nσ o) (dxx : (x1, x2) ∈ P nσ o).
(f1 x1, f2 x2) ∈ P nτ o
(x1, x2) ∈ P nα o = R α x1 x2
P n x o = dxx
P n λ(x : σ ) → t o =
λ(x1 : S1 nσ o) (x2 : S2 nσ o) (dxx : (x1, x2) ∈ P nσ o) →

P n t o
P n s t o = P n s o S1 n s o S2 n s o P n t o
P n ε o = ε
P n Γ, x : τ o = P n Γ o , x1 : S1 nτ o , x2 : S2 nτ o , dxx : (x1, x2) ∈ P nτ o
P n Γ,α : ?o = P n Γ o ,α1 : ?,α2 : ?,R α : α1 → α2 → d?e

In the above, S1 n s o and S2 n s o simply subscript all (term and type) variables in their arguments
with 1 and 2, to make them refer to the �rst or second computation. To wit, the straightforward
de�nition is:

Si n x o = xi
Si n λ(x : σ ) → t o = λ(xi : σ ) → Si n t o
Si n s t o = Si n s o Si n t o
Si nσ → τ o = Si nσ o→ Si nτ o
Si nα o = αi

It might be unclear how the proof P n t o references the original term t. Indeed, it does not
do so explicitly. But since in PTS β-equivalent types have the same members, we can construct
typing judgement that mention t. As mentioned, from Γ ` t : τ it follows that P n Γ o ` P n t o :
(S1 n t o , S2 n t o) ∈ P nτ o [Bernardy and Lasson, 2011, Th. 3]. This is best shown on a small
example.
Example 18.1.1
Take for instance an identity function id = λ(x : α) → x, which is typed in an open context (that is,
α : ? ` λ(x : α) → x). The transformation gives us

pid = P n id o = λ(x1 : α1) (x2 : α2) (dxx : (x1, x2) ∈ P nα o) → dxx,

which simply returns the proofs that inputs are related:

α1 : ?,α2 : ?,R α : α1 → α2 → d?e `

pid : Π(x1 : α1) (x2 : α2). (x1, x2) ∈ P nα o→ (x1, x2) ∈ P nα o .
This typing judgement does not mention id. But since x1 =β S1 n id o x1 and x2 = S2 n id o x2,

we can also show that id’s outputs are related whenever the inputs are:

α1 : ?,α2 : ?,R α : α1 → α2 → d?e `

pid : Π(x1 : α1) (x2 : α2). (x1, x2) ∈ P nα o→ (S1 n id o x1, S2 n id o x2) ∈ P nα o .
More concisely, we can show that:

α1 : ?,α2 : ?,R α : α1 → α2 → d?e ` pid : (S1 n id o , S2 n id o) ∈ P nα → α o . �
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18.2 Di�erentiation and parametricity
We obtain a close variant of di�erentiation by altering the transformation for binary parametricity.
We obtain a variant very close to the one investigated by Bernardy, Jansson, and Paterson [2010].
Instead of only having proofs that values are related, we can modify (t1, t2) ∈ P nτ o to be a type
of values — more precisely, a dependent type (t1, t2) ∈ ∆2 nτ o of valid changes, indexed by source
t1 : S1 nτ o and destination t2 : S2 nτ o. Similarly, R α is replaced by a dependent type of changes, not
propositions, that we write ∆α . Formally, this is encoded by replacing sort d?e with ? in Bernardy
and Lasson [2011]’s transform, and by moving target programs in a PTS that allows for both simple
and dependent types, like the Edinburgh Logical Framework; such a PTS is known as λP [Barendregt,
1992].

For type variables α , we specialize the transformation further, ensuring that α1 = α2 = α
(and adapting S1 n – o , S2 n – o accordingly to not add subscripts to type variable). Without this
specialization, we get to deal with changes across di�erent types, which we don’t do just yet but
defer to Sec. 18.4.

We �rst show how the transformation a�ects typing contexts:

D n ε o = ε
D n Γ, x : σ o = D n Γ o , x1 : σ , x2 : σ , dx : (x1, x2) ∈ ∆2 nσ o
D n Γ,α : ?o = D n Γ o ,α : ?,∆α : α → α → ?

Unlike standard di�erentiation, transformed programs bind, for each input variable x : σ , a source
x1 : σ , a destination x2 : σ , and a valid change dx from x1 to x2. More in detail, for each variable in
input programs x : σ , programs produced by standard di�erentiation bind both x : σ and dx : σ ;
valid use of these programs requires dx to be a valid change with source x, but this is not enforced
through types. Instead, programs produced by this variant of di�erentiation bind, for each variable
in input programs x : σ , both source x1 : σ , destination x2 : σ , and a valid change dx from x1 to x2,
where validity is enforced through dependent types.

For input type variables α , output programs also bind a dependent type of valid changes ∆α .
Next, we de�ne the type of changes. Since change types are indexed by source and destination,

the type of function changes forces them to be valid, and the de�nition of function changes
resembles our earlier logical relation for validity. More precisely, if df is a change from f1 to f2
(df : (f1, f2) ∈ ∆2 nσ → τ o), then df must map any change dx from initial input x1 to updated input
x2 to a change from initial output f1 x1 to updated output f2 x2.

(f1, f2) ∈ ∆2 nσ → τ o = Π(x1 x2 : σ ) (dx : (x1, x2) ∈ ∆2 nσ o).
(f1 x1, f2 x2) ∈ ∆2 nτ o
(x1, x2) ∈ ∆2 nα o = ∆α x1 x2

At this point, the transformation on terms acts on abstraction and application to match the
transformation on typing contexts. The de�nition of D n λ(x : σ ) → t o follows the de�nition
of D n Γ, x : σ o— both transformation results bind the same variables x1, x2, dx with the same types.
Application provides corresponding arguments.

D n x o = dx
D n λ(x : σ ) → t o = λ(x1 x2 : σ ) (dx : (x1, x2) ∈ ∆2 nσ o) → D n t o
D n s t o = D n s o S1 n s o S2 n s o D n t o

If we extend the language to support primitives and their manually-written derivatives, it is
useful to have contexts also bind, next to type variables α , also change structures for α , to allow
terms to use change operations. Since the di�erentiation output does not use change operations
here, we omit change structures for now.
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Remark 18.2.1 (Validity and ⊕)
Because we omit change structures (here and through most of the chapter), the type of di�erentiation
only suggests that D n t o is a valid change, but not that validity agrees with ⊕.

In other words, dependent types as used here do not prove all theorems expected of an incremen-
tal transformation. While we can prove the fundamental property of our logical relation, we cannot
prove that ⊕ agrees with di�erentiation for abstract types. As we did in Sec. 13.4 (in particular
Plugin Requirement 13.4.1), we must require that validity relations provided for type variables agree
with implementations of ⊕ as provided for type variables: formally, we must state (internally) that
∀(x1 x2 : α) (dx : ∆α x1 x2). (x1 ⊕ dx, x2) ∈ P nα o. We can state this requirement by internalizing
logical equivalence (such as shown in Sec. 18.1, or using Bernardy et al. [2010]’s variant in λP ). But
since this statement quanti�es over members of α , it is not clear if it can be proven internally when
instantiating α with a type argument. We leave this question (admittedly crucial) for future work.�

This transformation is not incremental, as it recomputes both source and destination for each
application, but we could �x this by replacing S2 n s o with S1 n s o⊕D n s o (and passing change struc-
tures to make ⊕ available to terms), or by not passing destinations. We ignore such complications
here.

18.3 Proving di�erentiation correct externally
Instead of producing dependently-typed programs that show their correctness, we might want
to produce simply-typed programs (which are easier to compile e�ciently) and use an external
correctness proof, as in Chapter 12. We show how to generate such external proofs here. For
simplicity, here we produce external correctness proofs for the transformation we just de�ned on
dependently-typed outputs, rather than de�ning a separate simply-typed transformation.

Speci�cally, we show how to generate from well-typed terms t a proof that D n t o is correct,
that is, that (S1 n t o , S2 n t o ,D n t o) ∈ ∆V nτ o.

Proofs are generated through the following transformation, de�ned in terms of the transforma-
tion from Sec. 18.2. Again, we show �rst typing contexts and the logical relation:

DP n ε o = ε
DP n Γ, x : τ o = DP n Γ o , x1 : τ , x2 : τ ,

dx : (x1, x2) ∈ ∆2 nτ o , dxx : (x1, x2, dx) ∈ ∆V nτ o
DP n Γ,α : ?o = DP n Γ o ,α : ?,

∆α : α → α → ?,
R α : Π(x1 : α) (x2 : α) (dx : (x1, x2) ∈ ∆2 nα o) → d?e
(f1, f2, df ) ∈ ∆V nσ → τ o =

Π(x1 x2 : σ ) (dx : (x1, x2) ∈ ∆2 nσ o) (dxx : (x1, x2, dx) ∈ ∆V nσ o).
(f1 x1, f2 x2, df x1 x2 dx) ∈ ∆V nτ o

(x1, x2, dx) ∈ ∆V nα o = R α x1 x2 dx

The transformation from terms to proofs then matches the de�nition of typing contexts:

DP n x o = dxx
DP n λ(x : σ ) → t o =
λ(x1 x2 : σ ) (dx : (x1, x2) ∈ ∆2 nσ o) (dxx : (x1, x2, dx) ∈ ∆V nσ o) →

DP n t o
DP n s t o = DP n s o S1 n s o S2 n s o D n t o DP n t o

This term produces a proof object in PTS λ2P , which is produced by augmenting λP following
Bernardy and Lasson [2011]. The informal proof content of generated proofs follows the proof
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of D n – o’s correctness (Theorem 12.2.2): For a variable x, we just use the assumption dxx that
(x1, dx, x2) ∈ ∆V nτ o, that we have in context. For abstractions λx → t, we have to show that D n t o
is correct for all valid input changes x1, x2, dx and for all proofs dxx : (x1, dx, x2) ∈ ∆V nσ o that dx
is indeed a valid input change, so we bind all those variables in context, including proof dxx, and use
DP n t o recursively to prove that D n t o is correct in the extended context. For applications s t, we
use the proof that D n s o is correct (obtained recursively via DP n s o). To show that D n s o D n t o,
that is D n s o S1 n s o S2 n s o D n t o, we simply show that D n s o is being applied to valid inputs,
using the proof that D n t o is correct (obtained recursively via DP n t o).

18.4 Combinators for polymorphic change structures
Earlier, we restricted our transformation on λ→ terms, so that there could be a change dt from t1 to
t2 only if t1 and if t2 have the same type. In this section we lift this restriction and de�ne polymorphic
change structures (also called change structures when no ambiguity arises). To do so, we sketch
how to extend core change-structure operations to polymorphic change structures.

We also show a few combinators, combining existing polymorphic change structures into new
ones. We believe the combinator types are more enlightening than their implementations, but we
include them here for completeness. We already described a few constructions on non-polymorphic
change structures; however, polymorphic change structures enable new constructions that insert or
remove data, or apply isomorphisms to the source or destination type.

We conjecture that combinators for polymorphic change structure can be used to compose, out
of small building blocks, change structures that, for instance, allow inserting or removing elements
from a recursive datatype such as lists. Derivatives for primitives could then be produced using
equational reasoning as described in Sec. 11.2. However, we leave investigation of such avenues to
future work.

We describe change operations for polymorphic change structures via a Haskell record contain-
ing change operations, and we de�ne combinators on polymorphic change structures. Of all change
operations, we only consider ⊕; to avoid confusion, we write � for the polymorphic variant of ⊕.

data CS τ1 δτ τ2 = CS {
(�) :: τ1 → δτ → τ2
}

This code de�ne a record type constructor CS with a data constructor also written CS, and a �eld
accessor written (�); we use τ1, δτ and τ2 (and later also σ1, δσ and σ2) for Haskell type variables.
To follow Haskell lexical rules, we use here lowercase letters (even though Greek ones).

We have not formalized de�nitions of validity, or proofs that it agrees with �, but for all the
change structures and combinators in this section, this exercise appears no harder than the ones in
Chapter 13.

In Sec. 11.1 and 17.2 change structures are embedded in Haskell using type class ChangeStruct τ .
Conversely, here we do not de�ne a type class of polymorphic change structures, because (apart
from the simplest scenarios), Haskell type class resolution is unable to choose a canonical way to
construct a polymorphic change structure using our combinators.

All existing change structures (that is, instances of ChangeStruct τ ) induce generalized change
structures CS τ (∆τ ) τ .

typeCS :: ChangeStruct τ ⇒ CS τ (∆τ ) τ
typeCS = CS (⊕)

We can also have change structures across di�erent types. Replacement changes are possible:
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replCS :: CS τ1 τ2 τ2
replCS = CS $ λx1 x2 → x2

But replacement changes are not the only option. For product types, or for any form of nested data,
we can apply changes to the di�erent components, changing the type of some components. We can
also de�ne a change structure for nullary products (the unit type) which can be useful as a building
block in other change structures:

prodCS :: CS σ1 δσ σ2 → CS τ1 δτ τ2 → CS (σ1,τ1) (δσ ,δτ ) (σ2,τ2)
prodCS scs tcs = CS $ λ(s1, t1) (ds, dt) → ((�) scs s1 ds, (�) tcs t1 dt)
unitCS :: CS () () ()
unitCS = CS $ λ() () → ()

The ability to modify a �eld to one of a di�erent type is also known as in the Haskell commu-
nity as polymorphic record update, a feature that has proven desirable in the context of lens li-
braries [O’Connor, 2012; Kmett, 2012].

We can also de�ne a combinator sumCS for change structures on sum types, similarly to our
earlier construction described in Sec. 11.6. This time, we choose to forbid changes across branches
since they’re ine�cient, though we could support them as well, if desired.

sumCS :: CS s1 ds s2 → CS t1 dt t2 →
CS (Either s1 t1) (Either ds dt) (Either s2 t2)

sumCS scs tcs = CS go
where
go (Le� s1) (Le� ds) = Le� $ (�) scs s1 ds
go (Right t1) (Right dt) = Right $ (�) tcs t1 dt
go _ _ = error "Invalid changes"

Given two change structures from τ1 to τ2, with respective change types δτ a and δτb , we can
also de�ne a new change structure with change type Either δτ a δτb , that allows using changes from
either structure. We capture this construction through combinator mSumCS, having the following
signature:

mSumCS :: CS τ1 δτ a τ2 → CS τ1 δτb τ2 → CS τ1 (Either δτ a δτb ) τ2
mSumCS acs bcs = CS go

where
go t1 (Le� dt) = (�) acs t1 dt
go t1 (Right dt) = (�) bcs t1 dt

This construction is possible for non-polymorphic change structures; we only need change structures
to be �rst-class (instead of a type class) to be able to internalize this construction in Haskell.

Using combinator lInsCS we can describe updates going from type τ1 to type (σ ,τ2), assuming
a change structure from τ1 to τ2: that is, we can prepend a value of type σ to our data while we
modify it. Similarly, combinator lRemCS allows removing values:

lInsCS :: CS t1 dt t2 → CS t1 (s, dt) (s, t2)
lInsCS tcs = CS $ λt1 (s, dt) → (s, (�) tcs t1 dt)
lRemCS :: CS t1 dt (s, t2) → CS t1 dt t2
lRemCS tcs = CS $ λt1 dt → snd $ (�) tcs t1 dt

We can also transform change structures given suitable conversion functions.
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lIsoCS :: (t1 → s1) → CS s1 dt t2 → CS t1 dt t2
mIsoCS :: (dt → ds) → CS t1 ds t2 → CS t1 dt t2
rIsoCS :: (s2 → t2) → CS t1 dt s2 → CS t1 dt t2
isoCS :: (t1 → s1) → (dt → ds) → (s2 → t2) → CS s1 ds s2 → CS t1 dt t2

To do so, we must only compose � with the given conversion functions according to the types.
Combinator isoCS arises by simply combining the other ones:

lIsoCS f tcs = CS $ λs1 dt → (�) tcs (f s1) dt
mIsoCS g tcs = CS $ λt1 ds→ (�) tcs t1 (g ds)
rIsoCS h tcs = CS $ λt1 dt → h $ (�) tcs t1 dt
isoCS f g h scs = lIsoCS f $ mIsoCS g $ rIsoCS h scs

With a bit of datatype-generic programming infrastructure, we can reobtain only using combi-
nators the change structure for lists shown in Sec. 11.3.3, which allows modifying list elements. The
core de�nition is the following one:

listMuChangeCS :: CS a1 da a2 → CS (Listµ a1) (Listµ da) (Listµ a2)
listMuChangeCS acs = go where

go = isoCS unRollL unRollL rollL $
sumCS unitCS $ prodCS acs go

The needed infrastructure appears in Fig. 18.1.

-- Our list type:
data List a = Nil | Cons a (List a)

-- Equivalently, we can represent lists as a �xpoint of a sum-of-product pattern functor:
data Mu f = Roll {unRoll :: f (Mu f )}
data ListF a x = L {unL :: Either () (a, x)}
type Listµ a = Mu (ListF a)
rollL :: Either () (a, Listµ a) → Listµ a
rollL = Roll ◦ L
unRollL :: Listµ a→ Either () (a, Listµ a)
unRollL = unL ◦ unRoll

-- Isomorphism between List and Listµ :
lToLMu :: List a→ Listµ a
lToLMu Nil = rollL $ Le� ()
lToLMu (Cons a as) = rollL $ Right (a, lToLMu as)
lMuToL :: Listµ a→ List a
lMuToL = go ◦ unRollL where
go (Le� ()) = Nil
go (Right (a, as)) = Cons a (lMuToL as)
-- A change structure for List:

listChangesCS :: CS a1 da a2 → CS (List a1) (List da) (List a2)
listChangesCS acs = isoCS lToLMu lToLMu lMuToL $ listMuChangeCS acs

Figure 18.1: A change structure that allows modifying list elements.
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Section summary We have de�ned polymorphic change structures and shown they admit a rich
combinator language. Now, we return to using these change structures for di�erentiating λ→ and
System F.

18.5 Di�erentiation for System F
After introducing changes across di�erent types, we can also generalize di�erentiation for λ→ so
that it allows for the now generalized changes:

(f1, f2) ∈ ∆2 nσ → τ o = Π(x1 : S1 nσ o) (x2 : S2 nσ o) (dx : (x1, x2) ∈ ∆2 nσ o).
(f1 x1, f2 x2) ∈ ∆2 nτ o
(x1, x2) ∈ ∆2 nα o = ∆α x1 x2
D n x o = dx
D n λ(x : σ ) → t o = λ(x1 : S1 nσ o) (x2 : S2 nσ o) (dx : (x1, x2) ∈ ∆2 nσ o) → D n t o
D n s t o = D n s o S1 n s o S2 n s o D n t o
D n ε o = ε
D n Γ, x : τ o = D n Γ o , x1 : S1 nτ o , x2 : S2 nτ o , dx : (x1, x2) ∈ ∆2 nτ o
D n Γ,α : ?o = D n Γ o ,α1 : ?,α2 : ?,∆α : α1 → α2 → ?

By adding a few additional rules, we can extend di�erentiation to System F (the PTS λ2). We choose
to present the additional rules using System F syntax rather than PTS syntax.

(f1, f2) ∈ ∆2 n ∀α . T o =
Π(α1 : ∗) (α2 : ∗) (∆α : α1 → α2 → ?). (f1 [α1 ], f2 [α2 ]) ∈ ∆2 n T o

D nΛα . t o =
λ(α1 α2 : ?) (∆α : α1 → α2 → ?) → D n t o

D n t [τ ] o = D n t o S1 nτ o S2 nτ o ((–, –) ∈ ∆2 nτ o)
Produced terms use a combination of System F and dependent types, which is known as λP2 [Baren-
dregt, 1992] and is strongly normalizing. This PTS corresponds to second-order (intuitionistic)
predicate logic and is part of Barendregt’s lambda cube; λP2 does not admit types depending on
types (that is, type-level functions), but admits all other forms of abstraction in the lambda cube
(terms on terms like λ→, terms on types like System F, and types on terms like LF/λP ).

Finally, we sketch a transformation producing proofs that di�erentiation is correct for System F.

DP n ε o = ε
DP n Γ, x : τ o = DP n Γ o , x1 : S1 nτ o , x2 : S2 nτ o ,

dx : (x1, x2) ∈ ∆2 nτ o , dxx : (x1, x2, dx) ∈ ∆V nτ o
DP n Γ,α : ?o = DP n Γ o ,
α1 : ?,α2 : ?,∆α : α1 → α2 → ?
R α : Π(x1 : α1) (x2 : α2) (dx : (x1, x2) ∈ ∆2 nα o) → d?e
(f1, f2, df ) ∈ ∆V n ∀α . T o =

Π(α1 : ∗) (α2 : ∗) (∆α : α1 → α2 → ?)
(R α : Π(x1 : α1) (x2 : α2) (dx : (x1, x2) ∈ ∆2 nα o) → d?e).
(f1 [α1 ], f2 [α2 ], df [α1 ] [α2 ] [∆α ]) ∈ ∆V n T o

(f1, f2, df ) ∈ ∆V nσ → τ o =
Π(x1 : S1 nσ o) (x2 : S2 nσ o) (dx : (x1, x2) ∈ ∆2 nσ o) (dxx : (x1, x2, dx) ∈ ∆V nσ o).
(f1 x1, f2 x2, df x1 x2 dx) ∈ ∆V nτ o

(x1, x2, dx) ∈ ∆V nα o = R α x1 x2 dx
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DP n x o = dxx
DP n λ(x : σ ) → t o =
λ(x1 : S1 nσ o) (x2 : S2 nσ o) (dx : (x1, x2) ∈ ∆2 nσ o)
(dxx : (x1, x2, dx) ∈ ∆V nσ o) →
DP n t o

DP n s t o = DP n s o S1 n s o S2 n s o D n t o DP n t o
DP nΛα . t o =
λ(α1 α2 : ?) (∆α : α1 → α2 → ?)
(R α : Π(x1 : α1) (x2 : α2) (dx : (x1, x2) ∈ ∆2 nα o) → d?e) →
DP n t o

DP n t [τ ] o = DP n t o S1 nτ o S2 nτ o ((–, –) ∈ ∆2 nτ o) ((–, –, –) ∈ ∆V nτ o)
Produced terms live in λ2P2, the logic produced by extending λP2 following Bernardy and Lasson. A
variant producing proofs for a non-dependently-typed di�erentiation (as suggested earlier) would
produce proofs in λ22, the logic produced by extending λ2 following Bernardy and Lasson.

18.6 Related work
Dependently-typed di�erentiation for System F, as given, coincides with the parametricity transfor-
mation for System F given by Bernardy, Jansson, and Paterson [2010, Sec. 3.1]. But our application
is fundamentally di�erent: for known types, Bernardy et al. only consider identity relations, while
we can consider non-identity relations as long as we assume that 	 is available for all types. What
is more, Bernardy et al. do not consider changes, the update operator ⊕, or change structures across
di�erent types: changes are replaced by proofs of relatedness with no computational signi�cance.
Finally, non-dependently-typed di�erentiation (and its corectness proof) is novel here, as it makes
limited sense in the context of parametricity, even though it is a small variant of Bernardy et al.’s
parametricity transform.

18.7 Prototype implementation
We have written a prototype implementation of the above rules for a PTS presentation of System F,
and veri�ed it on a few representative examples of System F terms. We have built our implementation
on top of an existing typechecker for PTSs.4

Since our implementation is de�ned in terms of a generic PTS, some of the rules presented above
are uni�ed and generalized in our implementation, suggesting the transformation might generalize
to arbitrary PTSs. In the absence of further evidence on the correctness of this generalization, we
leave a detailed investigation as future work.

18.8 Chapter conclusion
In this chapter, we have sketched how to de�ne and prove correct di�erentiation following Bernardy
and Lasson [2011]’s and Bernardy et al. [2010]’s work on parametricity by code transformation.
We give no formal correctness proof, but proofs appear mostly an extension of their methods. An
important open point is Remark 18.2.1. We have implemented and tested di�erentiation in an
existing mature PTS implementation, and veri�ed it is type-correct on a few typical terms.

We leave further investigation as future work.
4h�ps://github.com/Toxaris/pts/, by Tillmann Rendel, based on van Benthem Jutting et al. [1994]’s algorithm for PTS

typechecking.

https://github.com/Toxaris/pts/
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Related work

Existing work on incremental computation can be divided into two groups: Static incrementalization
and dynamic incrementalization. Static approaches analyze a program statically and generate an
incremental version of it. Dynamic approaches create dynamic dependency graphs while the
program runs and propagate changes along these graphs.

The trade-o� between the two is that static approaches have the potential to be faster because
no dependency tracking at runtime is needed, whereas dynamic approaches can support more
expressive programming languages. ILC is a static approach, but compared to the other static
approaches it supports more expressive languages.

In the remainder of this section, we analyze the relation to the most closely related prior works.
Ramalingam and Reps [1993], Gupta and Mumick [1999] and Acar et al. [2006] discuss further
related work. Other related work, more closely to cache-transfer style, is discussed in Sec. 17.6.

19.1 Dynamic approaches
One of the most advanced dynamic approach to incrementalization is self-adjusting computation,
which has been applied to Standard ML and large subsets of C [Acar, 2009; Hammer et al., 2011].
In this approach, programs execute on the original input in an enhanced runtime environment
that tracks the dependencies between values in a dynamic dependence graph [Acar et al., 2006];
intermediate results are memoized. Later, changes to the input propagate through dependency
graphs from changed inputs to results, updating both intermediate and �nal results; this processing
is often more e�cient than recomputation.

However, creating dynamic dependence graphs imposes a large constant-factor overhead during
runtime, ranging from 2 to 30 in reported experiments [Acar et al., 2009, 2010], and a�ecting the
initial run of the program on its base input. Acar et al. [2010] show how to support high-level data
types in the context of self-adjusting computation; however, the approach still requires expensive
runtime bookkeeping during the initial run. Our approach, like other static ones, uses a standard
runtime environment and has no overhead during base computation, but may be less e�cient when
processing changes. This pays o� if the initial input is big compared to its changes.

Chen et al. [2011] have developed a static transformation for purely functional programs, but this
transformation just provides a superior interface to use the runtime support with less boilerplate,
and does not reduce this performance overhead. Hence, it is still a dynamic approach, unlike the
transformation this work presents.

Another property of self-adjusting computation is that incrementalization is only e�cient if the
program has a suitable computation structure. For instance, a program folding the elements of a
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bag with a left or right fold will not have e�cient incremental behavior; instead, it’s necessary that
the fold be shaped like a balanced tree. In general, incremental computations become e�cient only
if they are stable [Acar, 2005]. Hence one may need to massage the program to make it e�cient.
Our methodology is di�erent: Since we do not aim to incrementalize arbitrary programs written
in standard programming languages, we can select primitives that have e�cient derivatives and
thereby require the programmer to use them.

Functional reactive programming [Elliott and Hudak, 1997] can also be seen as a dynamic
approach to incremental computation; recent work by Maier and Odersky [2013] has focused on
speeding up reactions to input changes by making them incremental on collections. Willis et al.
[2008] use dynamic techniques to incrementalize JQL queries.

19.2 Static approaches
Static approaches analyze a program at compile-time and produce an incremental version that
e�ciently updates the output of the original program according to changing inputs.

Static approaches have the potential to be more e�cient than dynamic approaches, because
no bookkeeping at runtime is required. Also, the computed incremental versions can often be
optimized using standard compiler techniques such as constant folding or inlining. However, none
of them support �rst-class functions; some approaches have further restrictions.

Our aim is to apply static incrementalization to more expressive languages; in particular, ILC
supports �rst-class functions and an open set of base types with associated primitive operations.

Sundaresh and Hudak [1991] propose to incrementalize programs using partial evaluation: given
a partitioning of program inputs in parts that change and parts that stay constant, Sundaresh and
Hudak partially evaluates a given program relative to the constant input parts, and combine the
result with the changing inputs.

19.2.1 Finite di�erencing
Paige and Koenig [1982] present derivatives for a �rst-order language with a �xed set of primitives.
Blakeley et al. [1986] apply these ideas to a class of relational queries. The database community
extended this work to queries on relational data, such as in algebraic di�erencing [Gupta and
Mumick, 1999], which inspired our work and terminology. However, most of this work does not
apply to nested collections or algebraic data types, but only to relational (�at) data, and no previous
approach handles �rst-class functions or programs resulting from defunctionalization or closure
conversion. Incremental support is typically designed monolithically for a whole language, rather
than piecewise. Improving on algebraic di�erencing, DBToaster (Koch [2010]; Koch et al. [2014])
guarantees asymptotic speedups with a compositional query transformation and delivers huge
speedup in realistic benchmarks, though still for a �rst-order database language.

More general (non-relational) data types are considered in the work by Gluche et al. [1997];
our support for bags and the use of groups is inspired by their work, but their architecture is
still rather restrictive: they lack support for function changes and restrict incrementalization to
self-maintainable views, without hinting at a possible solution.

It seems possible to transform higher-order functional programs to database queries, using a
variety of approaches [Grust et al., 2009; Cheney et al., 2013], some of which support �rst-class
functions via closure conversion [Grust and Ulrich, 2013; Grust et al., 2013], and incrementalize the
resulting programs using standard database technology. Such a solution would inherit limitations of
database incrementalization approaches: in particular, it appears that database incrementalization
approaches such as DBToaster can handle the insertion and removal of entire table rows, not of
smaller changes. Nevertheless, such an alternative approach might be worth investigating.
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Unlike later approaches to higher-order di�erentiation, we do not restrict our base types to
groups unlike Koch et al. [2016], and transformed programs we produce do not require further
runtime transformation unlike Koch et al. [2016] and Huesca [2015], as we discuss further next.

19.2.2 λ–di� and partial di�erentials
In work concurrent with Cai et al. [2014], Huesca [2015] introduces an alternative formalism, called
λ–di�, for incremental computation by program transformation. While λ–di� has some appealing
features, it currently appears to require program transformations at runtime. Other systems appear
to share this feature [Koch et al., 2016]. Hence, this section discusses the reason in some detail.

Instead of di�erentiating a term t relative to all inputs (free variables and function arguments)
via D n t o, like ILC, λ–di� di�erentiates terms relative to one input variable, and writes ∂t/∂x, dx for
the result of di�erentiating t relative to x , a term that computes the change in t when the value for
x is updated by change dx . The formalism also uses pointwise function changes, similarly to what
we discussed in Sec. 15.3.

Unfortunately, it is not known how to de�ne such a transformation for a λ-calculus with a
standard semantics, and the needed semantics appear to require runtime term transformations,
which are usually considered problematic when implementing functional languages. In particular,
it appears necessary to introduce a new term constructor D t, which evaluates t to a function value
λy → u, and then evaluates to λ(y,dy ) → ∂t/∂y, dy , which di�erentiates t at runtime relative to its
head variable y. As an indirect consequence, if the program under incrementalization contains
function term Γ ` t : σ → τ , where Γ contains n free variables, it can be necessary in the worst-case
to di�erentiate t over any subset of the n free variables in Γ. There are 2n such subsets. To perform
all term transformations before runtime, it seems hence necessary in the worst case to precompute
2n partial derivatives for each function term t, which appears unfeasible. On the other hand, it
is not clear how often this worst-case is realized, or how big n grows in typical programs, or if it
is simply feasible to perform di�erentiation at runtime, similarly to JIT compilation. Overall, an
e�cient implementation of λ–di� remains an open problem. It appears also Koch et al. [2016] su�er
similar problems, but a few details appear simpler since they restrict focus to functions over groups.

To see why λ–di� need introduce D t, consider di�erentiating ∂s t/∂x, dx , that is, the change d of
s t when xx is updated by change dx . Change d depends (a) on the change of t when x is updated
by dx , that is ∂t/∂x, dx ; (b) on how s changes when its input t is updated by ∂t/∂x, dx ; to express this
change, λ–di� expresses this via (D s) t ∂t/∂x, dx ; (c) on the change of s (applied to the updated t )
when x is updated by dx , that is ∂t/∂x, dx . To compute component (b), λ–di� writes D s to di�erentiate
s not relative to x, but relative to the still unknown head variable of s. If s evaluates to λy → u, then
y is the head variable of s, and D s di�erentiates u relative to y and evaluates to λ(y,dy ) → ∂u/∂y, dy .

Overall, the rule for di�erentiating application in λ-di� is

∂s t

∂x ,dx
= (Ds)

(
t ,
∂t

∂x ,dx

)
}
∂s

∂x ,dx

(
t ⊕

∂t

∂x ,dx

)
.

This rule appears closely related to Eq. (15.1), hence we refer to its discussion for clari�cation.
On the other hand, di�erentiating a term relative to all its inputs introduces a di�erent sort

of overhead. For instance, it is much more e�cient to di�erentiate map f xs relative to xs than
relative to f : if f undergoes a non-nil change df , D nmap f xs o must apply df to each elements in
the updated input xs. Therefore, in our practical implementations D nmap f xs o tests whether df
is nil and uses a more e�cient implementation. In Chapter 16, we detect at compile time whether
df is guaranteed to be nil. In Sec. 17.4.2, we instead detect at runtime whether df is nil. In both
cases, authors of derivatives must implement this optimization by hand. Instead, λ–di� hints at a
more general solution.



176 Chapter 19. Related work

19.2.3 Static memoization
Liu’s work [Liu, 2000] allows to incrementalize a �rst-order base program f (xold) to compute f (xnew),
knowing how xnew is related to xold. To this end, they transform f (xnew) into an incremental program
which reuses the intermediate results produced while computing f (xold), the base program. To
this end, (i) �rst the base program is transformed to save all its intermediate results, then (ii) the
incremental program is transformed to reuse those intermediate results, and �nally (iii) intermediate
results which are not needed are pruned from the base program. However, to reuse intermediate
results, the incremental program must often be rearranged, using some form of equational reasoning,
into some equivalent program where partial results appear literally. For instance, if the base program
f uses a left fold to sum the elements of a list of integers xold, accessing them from the head onwards,
and xnew prepends a new element h to the list, at no point does f (xnew) recompute the same results.
But since addition is commutative on integers, we can rewrite f (xnew) as f (xold) + h. The author’s
CACHET system will try to perform such rewritings automatically, but it is not guaranteed to
succeed. Similarly, CACHET will try to synthesize any additional results which can be computed
cheaply by the base program to help make the incremental program more e�cient.

Since it is hard to fully automate such reasoning, we move equational reasoning to the plugin
design phase. A plugin provides general-purpose higher-order primitives for which the plugin
authors have devised e�cient derivatives (by using equational reasoning in the design phase). Then,
the di�erentiation algorithm computes incremental versions of user programs without requiring
further user intervention. It would be useful to combine ILC with some form of static caching to
make the computation of derivatives which are not self-maintainable more e�cient. We plan to do
so in future work.
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Conclusion and future work

In databases, standard �nite di�erencing technology allows incrementalizing programs in a speci�c
domain-speci�c �rst-order language of collection operations. Unlike other approaches, �nite
di�erencing transforms programs to programs, which can in turn be transformed further.

Di�erentiation (Chapter 10) transforms higher-order programs to incremental ones called
derivatives, as long as one can provide incremental support for primitive types and operations.

Case studies in this thesis consider support for several such primitives. We �rst study a setting
restricted to self-maintainable derivatives (Chapter 16). Then we study a more general setting
where it is possible to remember inputs and intermediate results from one execution to the next,
thanks to a transformation to cache-transfer style (Chapter 17). In all cases, we are able to deliver
order-of-magnitude speedups on non-trivial examples; moreover, incrementalization produces
programs in standard languages that are subject to further optimization and code transformation.

Correctness of incrementalization appeared initially surprising, so we devoted signi�cant e�ort
to formal correctness proofs, either on paper or in mechanized proof assistants. The original
correctness proof of di�erentiation, using a set-theoretic denotational semantics [Cai et al., 2014],
was a signi�cant milestone, but since then we have simpli�ed the proof to a logical relations proof
that de�nes when a change is valid from a source to a destination, and proves that di�erentiation
produces valid changes (Chapter 12). Valid changes witness the di�erence between sources and
destinations; since changes can be nil, change validity arises as a generalization of the concept of
logical equivalence and parametricity for a language (at least in terminating languages) (Chapter 18).
Crucially, changes are not just witnesses: operation ⊕ takes a change and its source to the change
destination. One can consider further operations, that give rise to an algebraic structure that we
call change structure (Chapter 13).

Based on this simpli�ed proof, in this thesis we generalize correctness to further languages using
big-step operational semantics and (step-indexed) logical relations (Appendix C). Using operational
semantics we reprove correctness for simply-typed λ-calculus, then add support for recursive
functions (which would require domain-theoretic methods when using denotational semantics),
and �nally extend the proof to untyped λ-calculus. Building on a variant of this proof (Sec. 17.3.3),
we show that conversion to cache-transfer-style also preserves correctness.

Based on a di�erent formalism for logical equivalence and parametricity [Bernardy and Lasson,
2011], we sketch variants of the transformation and correctness proofs for simply-typed λ-calculus
with type variables and then for full System F (Chapter 18).

Future work To extend di�erentiation to System F, we must consider changes where source and
destination have di�erent types. This generalization of changes makes change operations much
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more �exible: it becomes possible to de�ne a combinator language for change structures, and it
appears possible to de�ne nontrivial change structures for algebraic datatypes using this combinator
language.

We conjecture such a combinator language will allow programmers to de�ne correct change
structures out of simple, reusable components.

Incrementalizing primitives correctly remains at present a signi�cant challenge. We provide
tools to support this task by formalizing equational reasoning, but it appears necessary to provide
more tools to programmers, as done by Liu [2000]. Conceivably, it might be possible to build such a
rewriting tool on top of the rewriting and automation support of theorem provers such as Coq.
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Appendix A

Preliminaries: syntax and
semantics of simply-typed
λ-calculus

To discuss how we incrementalize programs and prove that our incrementalization technique gives
correct results, we specify which foundation we use for our proofs and what object language we
study throughout most of Part II.

We mechanize our correctness proof using Agda, hence we use Agda’s underlying type theory
as our foundation. We discuss what this means in Appendix A.1.

Our object language is a standard simply-typed λ-calculus (STLC) [Pierce, 2002, Ch. 9], param-
eterized over base types and constants. We term the set of base types and constants a language
plugin (see Appendix A.2.5). In our examples we assume that the language plugins supports needed
base types and constants. Later (e.g., in Chapter 12) we add further requirements to language
plugins, to support incrementalization of the language features they add to our STLC. Rather than
operational semantics we use a denotational semantics, which is however set-theoretic rather than
domain-theoretic. Our object language and its semantics are summarized in Fig. A.1.

At this point, readers might want to skip to Chapter 10 right away, or focus on denotational
semantics, and refer to this section as needed.

A.1 Our proof meta-language
In this section we describe the logic (or meta-language) used in our mechanized correctness proof.

First, as usual, we distinguish between “formalization” (that is, on-paper formalized proofs) and
“mechanization” (that is, proofs encoded in the language of a proof assistant for computer-aided
mechanized veri�cation).

To prove the correctness of ILC, we provide a mechanized proof in Agda [Agda Development
Team, 2013]. Agda implements intensional Martin-Löf type theory (from now on, simply type
theory), so type theory is also the foundation of our proofs.

At times, we use conventional set-theoretic language to discuss our proofs, but the di�erences
are only super�cial. For instance, we might talk about a set of elements S and with elements such
as s ∈ S, though we always mean that S is a metalanguage type, that s is a metalanguage value, and
that s : S. Talking about sets avoids ambiguity between types of our meta-language and types of
our object-language (that we discuss next in Appendix A.2).

181



182 Chapter A. Preliminaries

Notation A.1.1
We’ll let uppercase latin letters A,B,C . . . ,V ,U range over sets, never over types. �

We do not prove correctness of all our language plugins. However, in earlier work [Cai et al.,
2014] we prove correctness for a language plugin supporting bags, a type of collection (described in
Sec. 10.2). For that proof, we extend our logic by postulating a few standard axioms on the imple-
mentation of bags, to avoid proving correct an implementation of bags, or needing to account for
di�erent values representing the same bag (such di�erent values typically arise when implementing
bags as search trees).

A.1.1 Type theory versus set theory

Here we summarize a few features of type theory over set theory.
Type theory is dependently typed, so it generalizes function type A→ B to dependent function

type (x : A) → B, where x can appear free in B. Such a type guarantees that if we apply a function
f : (x : A) → B to an argument a : A, the result has type B [x := a], that is B where x is substituted
by a. At times, we will use dependent types in our presentation.

Moreover, by using type theory:

• We do not postulate the law of excluded middle; that is, our logic is constructive.

• Unlike set theory, type theory is proof-relevant: that is, proofs are �rst-class mathematical
objects.

• Instead of subsets {x ∈ A | P(x)}, we must use Σ-types Σ(x : A)P(x) which contain pairs of
elements x and proofs they satisfy predicate P .

• In set theory, we can assume without further ado functional extensionality, that is, that
functions that give equal results on all equal inputs are equal themselves. Intuitionistic type
theory does not prove functional extensionality, so we need to add it as a postulate. In Agda,
this postulate is known to be consistent [Hofmann, 1996], hence it is safe to assume1.

To handle binding issues in our object language, our formalization uses typed de Bruijn indexes,
because this techniques takes advantage of Agda’s support for type re�nement in pattern matching.
On top of that, we implement a HOAS-like frontend, which we use for writing speci�c terms.

A.2 Simply-typed λ-calculus
We consider as object language a strongly-normalizing simply-typed λ-calculus (STLC). We choose
STLC as it is the simplest language with �rst-class functions and types, while being a su�cient
model of realistic total languages.2 We recall the syntax and typing rules of STLC in Figs. A.1a
and A.1b, together with metavariables we use. Language plugins de�ne base types ι and constants c.
Types can be base types ι or function types σ → τ . Terms can be constants c, variables x, function
applications t1 t2 or λ-abstractions λ(x : σ ) → t. To describe assumptions on variable types when
typing terms, we de�ne (typing) contexts Γ as being either empty ε , or as context extensions Γ, x : τ ,
which extend context Γ by asserting variable x has type τ . Typing is de�ned through a judgment

1h�p://permalink.gmane.org/gmane.comp.lang.agda/2343
2To know why we restrict to total languages see Sec. 15.1.

http://permalink.gmane.org/gmane.comp.lang.agda/2343
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ι ::= . . . (base types)
σ ,τ ::= ι | τ → τ (types)

Γ ::= ε | Γ,x : τ (typing contexts)
c ::= . . . (constants)

s, t ::= c | λ(x : σ ) → t | t t | x (terms)

(a) Syntax

`C c : τ
Γ ` c : τ

Const
Γ1,x : τ , Γ2 ` x : τ

Lookup Γ ` t : τ Γ,x : σ ` t : τ
Γ ` λ(x : σ ) → t : σ → τ

Lam

Γ ` s : σ → τ Γ ` t : σ
Γ ` s t : τ

App

(b) Typing

n ι o = . . .
nσ → τ o = nσ o→ nτ o

(c) Values.

n ε o = { � }
n Γ,x : τ o = { (ρ,x = v) | ρ ∈ n Γ o ∧v ∈ nτ o }

(d) Environments.

n c o ρ = n c oC

n λ(x : σ ) → t o ρ = λ(v : nσ o) → n t o (ρ,x = v)
n s t o ρ = (n s o ρ) (n t o ρ)

nx o ρ = lookup x in ρ

(e) Denotational semantics.

Figure A.1: Standard de�nitions for the simply-typed lambda calculus.

Γ ` t : τ , stating that term t under context Γ has type τ .3 For a proper introduction to STLC we refer
the reader to Pierce [2002, Ch. 9]. We will assume signi�cant familiarity with it.

An extensible syntax of types In fact, the de�nition of base types can be mutually recursive
with the de�nition of types. So a language plugin might add as base types, for instance, collections
of elements of type τ , products and sums of type σ and type τ , and so on. However, this mutual
recursion must satisfy a few technical restrictions to avoid introducing subtle inconsistencies, and
Agda cannot enforce these restrictions across modules. Hence, if we de�ne language plugins as
separate modules in our mechanization, we need to verify by hand that such restrictions are satis�ed
(which they are). See Appendix B.1 for the gory details.

Notation A.2.1
We typically omit type annotations on λ-abstractions, that is we write λx → t rather than λ(x :
σ ) → t. Such type annotations can often be inferred from context (or type inference). Nevertheless,

3We only formalize typed terms, not untyped ones, so that each term has a unique type. That is, in the relevant jargon, we
use Church-style typing as opposed to Curry-style typing. Alternatively, we use an intrinsically-typed term representation.
In fact, arguably we mechanize at once both well-typed terms and their typing derivations. This is even more clear in our
mechanization; see discussion in Appendix A.2.4.
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whenever we discuss terms of shape λx → t, we’re in fact discussing λ(x : σ ) → t for some arbitrary
σ . We write λx → t instead of λx . t , for consistency with the notation we use later for Haskell
programs.

We often omit ε from typing contexts with some assumptions. For instance we write x : τ1, y : τ2
instead of ε, x : τ1, y : τ2.

We overload symbols (often without warning) when they can be disambiguated from context,
especially when we can teach modern programming languages to disambiguate such overloadings.
For instance, we reuse→ for lambda abstractions λx → t, function spaces A→ B, and function
types σ → τ , even though the �rst is the separator. �

Extensions In our examples, we will use some unproblematic syntactic sugar over STLC, including
let expressions, global de�nitions, type inference, and we will use a Haskell-like concrete syntax. In
particular, when giving type signatures or type annotations in Haskell snippets, we will use :: to
separate terms or variables from their types, rather than : as in λ-calculus. To avoid confusion, we
never use : to denote the constructor for Haskell lists.

At times, our concrete examples will use Hindley-Milner (prenex) polymorphism, but this is also
not such a signi�cant extension. A top-level de�nition using prenex polymorphism, that is of type
∀α . τ (where α is free in τ ), can be taken as sugar for a metalevel family of object-level programs,
indexed by type argument τ1 of de�nitions of type τ [α := τ1 ]. We use this trick without explicit
mention in our �rst implementation of incrementalization in Scala [Cai et al., 2014].

A.2.1 Denotational semantics for STLC
To prove that incrementalization preserves the semantics of our object-language programs, we
de�ne a semantics for STLC. We use a naive set-theoretic denotational semantics: Since STLC is
strongly normalizing [Pierce, 2002, Ch. 12], its semantics need not handle partiality. Hence, we
can use denotational semantics but eschew using domain theory, and simply use sets from the
metalanguage (see Appendix A.1). Likewise, we can use normal functions as domains for function
types.

We �rst associate, to every type τ , a set of values nτ o, so that terms of a type τ evaluate to values
in nτ o. We call set nτ o a domain. Domains associated to types τ depend on domain associated to
base types ι, that must be speci�ed by language plugins (Plugin Requirement A.2.10).
De�nition A.2.2 (Domains and values)
The domain nτ o of a type τ is de�ned as in Fig. A.1c. A value is a member of a domain. �

We let metavariables u, v, . . ., a, b, . . . range over members of domains; we tend to use v for
generic values and a for values we use as a function argument. We also let metavariable f , g, . . .
range over values in the domain for a function type. At times we might also use metavariables
f , g, . . . to range over terms of function types; the context will clarify what is intended.

Given this domain construction, we can now de�ne a denotational semantics for terms. The
plugin has to provide the evaluation function for constants. In general, the evaluation function n t o
computes the value of a well-typed term t given the values of all free variables in t. The values of
the free variables are provided in an environment.
De�nition A.2.3 (Environments)
An environment ρ assigns values to the names of free variables.

ρ ::= ε | ρ,x = v

We write n Γ o for the set of environments that assign values to the names bound in Γ (see
Fig. A.1d). �
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Notation We often omit � from environments with some assignments. For instance we write
x = v1, y = v2 instead of �, x = v1, y = v2.
De�nition A.2.4 (Evaluation)
Given Γ ` t : τ , the meaning of t is de�ned by the function n t o of type n Γ o→ nτ o in Fig. A.1e.�

This is a standard denotational semantics of the simply-typed λ-calculus.
For each constant c : τ , the plugin provides n c oC : nτ o, the semantics of c (by Plugin Require-

ment A.2.11); since constants don’t contain free variables, n c oC does not depend on an environment.
We de�ne a program equivalence across terms of the same type t1 � t2 to mean n t1 o = n t2 o.

De�nition A.2.5 (Denotational equivalence)
We say that two terms Γ ` t1 : τ and Γ ` t2 : τ are denotationally equal, and write Γ � t1 � t2 : τ (or
sometimes t1 � t2), if for all environments ρ : n Γ o we have that n t1 o ρ = n t2 o ρ. �

Remark A.2.6
Beware that denotational equivalence cannot always be strengthened by dropping unused variables:
that is, Γ, x : σ � t1 � t2 : τ does not imply Γ � t1 � t2 : τ , even if x does not occur free in
either t1 or t2. Counterexamples rely on σ being an empty type. For instance, we cannot weaken
x : 0τ � 0 � 1 : Z (where 0τ is an empty type): this equality is only true vacuously, because there
exists no environment for context x : 0τ . �

A.2.2 Weakening
While we don’t discuss our formalization of variables in full, in this subsection we discuss brie�y
weakening on STLC terms and state as a lemma that weakening preserves meaning. This lemma is
needed in a key proof, the one of Theorem 12.2.2.

As usual, if a term t is well-typed in a given context Γ1, and context Γ2 extends Γ1 (which we
write as Γ1 � Γ2), then t is also well-typed in Γ2.
Lemma A.2.7 (Weakening is admissible)
The following typing rule is admissible:

Γ1 ` t : τ Γ1 � Γ2

Γ2 ` t : τ
Weaken

�

Weakening also preserves semantics. If a term t is typed in context Γ1, evaluating it requires an
environment matching Γ1. So if we weaken t to a bigger context Γ2, evaluation requires an extended
environment matching Γ2, and is going to produce the same result.
Lemma A.2.8 (Weakening preserves meaning)
Take Γ1 ` t : τ and ρ1 : n Γ1 o. If Γ1 � Γ2 and ρ2 : n Γ2 o extends ρ1, then we have that

n t o ρ1 = n t o ρ2. �

Mechanize these statements and their proofs requires some care. We have a meta-level type
Term Γ τ of object terms having type τ in context Γ. Evaluation has type n – o : Term Γ τ →
n Γ o → nτ o, so n t o ρ1 = n t o ρ2 is not directly ill-typed. To remedy this, we de�ne formally
the subcontext relation Γ1 � Γ2, and an explicit operation that weakens a term in context Γ1 to a
corresponding term in bigger context Γ2, weaken : Γ1 � Γ2 → Term Γ1 τ → Term Γ2 τ . We de�ne
the subcontext relation Γ1 � Γ2 as a judgment using order preserving embeddings.4 We refer to our
mechanized proof for details, including auxiliary de�nitions and relevant lemmas.

4As mentioned by James Chapman at h�ps://lists.chalmers.se/pipermail/agda/2011/003423.html, who attributes them to
Conor McBride.

https://lists.chalmers.se/pipermail/agda/2011/003423.html
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A.2.3 Substitution
Some facts can be presented using (capture-avoiding) substitution rather than environments, and
we do so at some points, so let us �x notation. We write t [x := s ] for the result of substituting
variable x in term t by term s.

We have mostly avoided mechanizing proofs about substitution, but we have mechanized
substitution following Keller and Altenkirch [2010] and proved the following substitution lemma:
Lemma A.2.9 (Substitution lemma)
For any term Γ ` t : τ , variable x : σ bound in Γ, we write Γ − x for the result of removing variable x
from Γ (as de�ned by Keller and Altenkirch). Take term Γ − x ` s : σ , and environment ρ : n Γ − x o.
Then, we have that substitution and evaluation commute as follows:

n t [x := s ] o ρ = n t o (ρ, x = n s o ρ). �

A.2.4 Discussion: Our mechanization and semantic style
To formalize meaning of our programs, we use denotational semantics while nowadays most prefer
operational semantics, in particular small-step. Hence, we next justify our choice and discuss related
work.

We expect we could use other semantics techniques, such as big-step or small-step semantics.
But at least for such a simple object language, working with denotational semantics as we use it is
easier than other approaches in a proof assistant, especially in Agda.

• Our semantics n – o is a function and not a relation, like in small-step or big-step semantics.

• It is clear to Agda that our semantics is a total function, since it is structurally recursive.

• Agda can normalize n – o on partially-known terms when normalizing goals.

• The meanings of our programs are well-behaved Agda functions, not syntax, so we know
“what they mean” and need not prove any lemmas about it. We need not prove, say, that
evaluation is deterministic.

In Agda, the domains for our denotational semantics are simply Agda types, and semantic values
are Agda values — in other words, we give a denotational semantics in terms of type theory. Using
denotational semantics allows us to state the speci�cation of di�erentiation directly in the semantic
domain, and take advantage of Agda’s support for equational reasoning for proving equalities
between Agda functions.

Related work Our variant is used for instance by McBride [2010], who attribute it to Augustsson
and Carlsson [1999] and Altenkirch and Reus [1999]. In particular, Altenkirch and Reus [1999]
already de�ne our type Term Γ τ of simply-typed λ-terms t, well-typed with type τ in context Γ,
while Augustsson and Carlsson [1999] de�ne semantic domains by induction over types. Benton
et al. [2012] and Allais et al. [2017] also discuss this approach to formalizing λ terms, and discuss
how to best prove various lemmas needed to reason, for instance, about substitution.

More in general, similar approaches are becoming more common when using proof assistants.
Our denotational semantics could be otherwise called a de�nitional interpreter (which is in particular
compositional), and mechanized formalizations using a variety of de�nitional interpreters are
nowadays often advocated, either using denotational semantics [Chlipala, 2008], or using functional
big-step semantics. Functional semantics are so convenient that their use has been advocated even
for languages that are not strongly normalizing [Owens et al., 2016; Amin and Rompf, 2017], even
at the cost of dealing with step-indexes.
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A.2.5 Language plugins
Our object language is parameterized by language plugins (or just plugins) that encapsulate its
domain-speci�c aspects.

In our examples, our language plugin will typically support integers and primitive operations
on them. However, our plugin will also support various sorts collections and base operations on
them. Our �rst example of collection will be bags. Bags are unordered collections (like sets) where
elements are allowed to appear more than once (unlike in sets), and they are also called multisets.

Our formalization is parameterized over one language plugin providing all base types and
primitives. In fact, we expect a language plugin to be composed out of multiple language plugins
merged together [Erdweg et al., 2012]. Our mechanization is mostly parameterized over language
plugins, but see Appendix B.1 for discussion of a few limitations.

The sets of base types and primitive constants, as well as the types for primitive constants, are
on purpose left unspeci�ed and only de�ned by plugins — they are extensions points. We write
some extension points using ellipses (“. . .”), and other ones by creating names, which typically use
C as a superscript.

A plugin de�nes a set of base types ι, primitives c and their denotational semantics n c oC . As
usual, we require that n c oC : nτ o whenever c : τ .

Summary To sum up the discussion of plugins, we collect formally the plugin requirements we
have mentioned in this chapter.

Plugin Requirement A.2.10 (Base types)
There is a set of base types ι, and for each there is a domain n ι o. �

Plugin Requirement A.2.11 (Constants)
There is a set of constants c. To each constant is associated a type τ , such that the constant has that
type, that is `C c : τ , and the constants’ semantics matches that type, that is n c oC : nτ o. �

After discussing the metalanguage of our proofs, the object language we study, and its semantics,
we begin discussing incrementalization in next chapter.
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Appendix B

More on our formalization

B.1 Mechanizing plugins modularly and limitations
Next, we discuss our mechanization of language plugins in Agda, and its limitations. For the
concerned reader, we can say these limitations a�ect essentially how modular our proofs are, and
not their cogency.

In essence, it’s not possible to express in Agda the correct interface for language plugins, so
some parts of language plugins can’t be modularized as desirable. Alternatively, we can mechanize
any �xed language plugin together with the main formalization, which is not truly modular, or
mechanize a core formulation parameterized on a language plugin, which that runs into a few
limitations, or encode plugins so they can be modularized and deal with encoding overhead.

This section requires some Agda knowledge not provided here, but we hope that readers familiar
with both Haskell and Coq will be able to follow along.

Our mechanization is divided into multiple Agda modules. Most modules have de�nitions that
depend on language plugins, directly or indirectly. Those take de�nitions from language plugins as
module parameters.

For instance, STLC object types are formalized through Agda type Type, de�ned in module
Parametric.Syntax .Type. The latter is parameterized over Base, the type of base types.

For instance, Base can support a base type of integers, and a base type of bags of elements of
type ι (where ι : Base). Simplifying a few details, our de�nition is equivalent to the following Agda
code:

module Parametric.Syntax .Type (Base : Set) where
data Type : Set where

base : (ι : Base) → Type
_⇒_ : (σ : Type) → (τ : Type) → Type

-- Elsewhere, in plugin:
data Base : Set where
baseInt : Base
baseBag : (ι : Base) → Base
-- ...

But with these de�nitions, we only have bags of elements of base type. If ι is a base type,
base (baseBag ι) is the type of bags with elements of type base ι. Hence, we have bags of elements
of base type. But we don’t have a way to encode Bag τ if τ is an arbitrary non-base type, such as
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base baseInt ⇒ base baseInt (the encoding of object type Z→ Z). Can we do better? If we ignore
modularization, we can de�ne types through the following mutually recursive datatypes:

mutual
data Type : Set where
base : (ι : Base Type) → Type
_⇒_ : (σ : Type) → (τ : Type) → Type

data Base : Set where
baseInt : Base
baseBag : (ι : Type) → Base

So far so good, but these types have to be de�ned together. We can go a step further by de�ning:

mutual
data Type : Set where
base : (ι : Base Type) → Type
_⇒_ : (σ : Type) → (τ : Type) → Type

data Base (Type : Set) : Set where
baseInt : Base Type
baseBag : (ι : Type) → Base Type

Here, Base takes the type of object types as a parameter, and Type uses Base Type to tie the
recursion. This de�nition still works, but only as long as Base and Type are de�ned together.

If we try to separate the de�nitions of Base and Type into di�erent modules, we run into trouble.

module Parametric.Syntax .Type (Base : Set → Set) where
data Type : Set where
base : (ι : Base Type) → Type
_⇒_ : (σ : Type) → (τ : Type) → Type

-- Elsewhere, in plugin:
data Base (Type : Set) : Set where
baseInt : Base Type
baseBag : (ι : Type) → Base Type

Here, Type is de�ned for an arbitrary function on types Base : Set → Set. However, this
de�nition is rejected by Agda’s positivity checker. Like Coq, Agda forbids de�ning datatypes that
are not strictly positive, as they can introduce inconsistencies.

The above de�nition of Type is not strictly positive, because we could pass to it as argument
Base = λτ → (τ → τ ) so that Base Type = Type→ Type, making Type occur in a negative position.
However, the actual uses of Base we are interested in are �ne. The problem is that we cannot inform
the positivity checker that Base is supposed to be a strictly positive type function, because Agda
doesn’t supply the needed expressivity.

This problem is well-known. It could be solved if Agda function spaces supported positivity
annotations,1 or by encoding a universe of strictly-positive type constructors. This encoding is
not fully transparent and adds hard-to-hide noise to development [Schwaab and Siek, 2013].2 Few
alternatives remain:

• We can forbid types from occurring in base types, as we did in our original paper [Cai et al.,
2014]. There we did not discuss at all a recursive de�nition of base types.

1As discussed in h�ps://github.com/agda/agda/issues/570 and h�ps://github.com/agda/agda/issues/2411.
2Using pattern synonyms and DISPLAY pragmas might successfully hide this noise.

https://github.com/agda/agda/issues/570
https://github.com/agda/agda/issues/2411
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• We can use the modular mechanization, disable positivity checking and risk introducing
inconsistencies. We tried this successfully in a branch of that formalization. We believe we
did not introduce inconsistencies in that branch but have no hard evidence.

• We can simply combine the core formalization with a sample plugin. This is not truly
modular because the core modularization can only be reused by copy-and-paste. Moreover, in
dependently-typed languages the content of a de�nition can a�ect whether later de�nitions
typecheck, so alternative plugins using the same interface might not typecheck.3

Sadly, giving up on modularity altogether appears the more conventional choice. Either way, as
we claimed at the outset, these modularity concerns only limit the modularity of the mechanized
proofs, not their cogency.

3Indeed, if Base were not strictly positive, the application Type Base would be ill-typed as it would fail positivity checking,
even though Base : Set → Set does not require Base to be strictly positive.
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Appendix C

(Un)typed ILC, operationally

In Chapter 12 we have proved ILC correct for a simply-typed λ-calculus. What about other languages,
with more expressive type systems or no type system at all?

In this chapter, we prove that ILC is still correct in untyped call-by-value (CBV) λ-calculus.
We do so without using denotational semantics, but using only an environment-based big-step
operational semantics and step-indexed logical relations. The formal development in this chapter
stands alone from the rest of the thesis, though we do not repeat ideas present elsewhere.

We prove ILC correct using, in increasing order of complexity,

1. STLC and standard syntactic logical relations;

2. STLC and step-indexed logical relations;

3. an untyped λ-calculus and step-indexed logical relations.

We have fully mechanized the second proof in Agda1, and done the others on paper. In all cases we
prove the fundamental property for validity; we detail later which corollaries we prove in which case.
The proof for untyped λ-calculus is the most interesting, but the others can serve as stepping stones.
Yann Régis-Gianas, in collaboration with me, recently mechanized a similar proof for untyped
λ-calculus in Coq, which appears in Sec. 17.3.2

Using operational semantics and step-indexed logical relations simpli�es extending the proofs
to more expressive languages, where denotational semantics or other forms of logical relations
would require more sophistication, as argued by Ahmed [2006].

Proofs by (step-indexed) logical relations also promise to be scalable. All these proofs appear to
be slight variants of proof techniques for logical program equivalence and parametricity, which are
well-studied topics, suggesting the approach might scale to more expressive type systems. Hence,
we believe these proofs clarify the relation with parametricity that has been noticed earlier [Atkey,
2015]. However, actually proving ILC correct for a polymorphic language (such as System F) is left
as future work.

We also expect that from our logical relations, one might derive a logical partial equivalence
relation among changes, similarly to Sec. 14.2, but we leave a development for future work.

Compared to earlier chapters, this one will be more technical and concise, because we already
introduced the ideas behind both ILC and logical relation proofs.

1Source code available in this GitHub repo: h�ps://github.com/inc-lc/ilc-agda.
2Mechanizing the proof for untyped λ-calculus is harder for purely technical reasons: mechanizing well-founded

induction in Agda is harder than mechanizing structural induction.
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Binding and environments On the technical side, we are able to mechanize our proof without
needing any technical lemmas about binding or weakening, thanks to a number of choices we
mention later.

Among other reasons, we avoid lemmas on binding because instead of substituting variables
with arbitrary terms, we record mappings from variables to closed values via environments. We also
used environments in Appendix A, but this time we use syntactic values rather than semantic ones.
As a downside, on paper, using environments makes for more and bigger de�nitions, because we
need to carry around both an environment and a term, instead of merging them into a single term via
substitution, and because values are not a subset of terms but an entirely separate category. But on
paper the extra work is straightforward, and in a mechanized setting it is simpler than substitution,
especially in a setting with an intrinsically typed term representation (see Appendix A.2.4).

Background/related work Our development is inspired signi�cantly by the use of step-indexed
logical relations by Ahmed [2006] and Acar, Ahmed, and Blume [2008]. We refer to those works
and to Ahmed’s lectures at OPLSS 20133 for an introduction to (step-indexed) logical relations.

Intensional and extensional validity Until this point, change validity only speci�es how func-
tion changes behave, that is, their extension. Using operational semantics, we can specify how valid
function changes are concretely de�ned, that is, their intension. To distinguish the two concepts,
we contrast extensional validity and intensional validity. Some extensionally valid changes are not
intensionally valid, but such changes are never created by derivation. De�ning intensional validity
helps to understand function changes: function changes are produced from changes to values in
environments or from functions being replaced altogether. Requiring intensional validity helps to
implement change operations such as ⊕ more e�ciently, by operating on environments. Later, in
Appendix D, we use similar ideas to implement change operations on defunctionalized function
changes: intensional validity helps put such e�orts on more robust foundations, even though we do
not account formally for defunctionalization but only for the use of closures in the semantics.

We use operational semantics to de�ne extensional validity in Appendix C.3 (using plain logical
relations) and Appendix C.4 (using step-indexed logical relations). We switch to intensional validity
de�nition in Appendix C.5.

Non-termination and general recursion This proof implies correctness of ILC in the presence
of general recursion, because untyped λ-calculus supports general recursion via �xpoint combina-
tors. However, the proof only applies to terminating executions of base programs, like for earlier
authors [Acar, Ahmed, and Blume, 2008]: we prove that if a function terminates against both a base
input v1 and an updated one v2, its derivative terminates against the base input and a valid input
change dv from v1 to v2.

We can also add a �xpoint construct to our typed λ-calculus and to our mechanization, without
signi�cant changes to our relations. However, a mechanical proof would require use of well-founded
induction, which our current mechanization avoids. We return to this point in Appendix C.7.

While this support for general recursion is e�ective in some scenarios, other scenarios can still
be incrementalized better using structural recursion. More e�cient support for general recursion is
a separate problem that we do not tackle here and leave for future work. We refer to discussion in
Sec. 15.1.

Correctness statement Our �nal correctness theorem is a variant of Corollary 13.4.5, that we
repeat for comparison:

3h�ps://www.cs.uoregon.edu/research/summerschool/summer13/curriculum.html.
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Corollary 13.4.5 (D n –o is correct, corollary)
If Γ ` t : τ and dρ B ρ1 ↪→ ρ2 : Γ then n t o ρ1 ⊕ nD n t o o dρ = n t o ρ2. �

We present our �nal correctness theorem statement in Appendix C.5. We anticipate it here for
illustration: the new statement is more explicit about evaluation, but otherwise broadly similar.

Corollary C.5.6 (D n –o is correct, corollary)
Take any term t that is well-typed (Γ ` t : τ ) and any suitable environments ρ1, dρ, ρ2, intensionally
valid at any step count (∀k. (k, ρ1, dρ, ρ2) ∈ RG n Γ o). Assume t terminates in both the old envi-
ronment ρ1 and the new environment ρ2, evaluating to output values v1 and v2 (ρ1 ` t ⇓ v1 and
ρ2 ` t ⇓ v2). Then D n t o evaluates in environment ρ and change environment dρ to a change value
dv (ρ1 ◆ dρ `∆ t ⇓ dv), and dv is a valid change from v1 to v2, so that v1 ⊕ dv = v2. �

Overall, in this chapter we present the following contributions:

• We give an alternative presentation of derivation, that can be mechanized without any binding-
related lemmas, not even weakening-related ones, by introducing a separate syntax for change
terms (Appendix C.1).

• We prove formally ILC correct for STLC using big-step semantics and logical relations (Ap-
pendix C.3).

• We show formally (with pen-and-paper proofs) that our semantics is equivalent to small-step
semantics de�nitions (Appendix C.2).

• We introduce a formalized step-indexed variant of our de�nitions and proofs for simply-
typed λ-calculus (Appendix C.3), which scales directly to de�nitions and proofs for untyped
λ-calculus.

• For typed λ-calculus, we also mechanize our step-indexed proof.

• In addition to (extensional) validity, we introduce a concept of intensional validity, that
captures formally that function changes arise from changing environments or functions being
replaced altogether (Appendix C.5).

C.1 Formalization

To present the proofs, we �rst describe our formal model of CBV ANF λ-calculus. We de�ne an
untyped ANF language, called λA. We also de�ne a simply-typed variant, called λA→, by adding on
top of λA a separate Curry-style type system.

In our mechanization of λA→, however, we �nd it more convenient to de�ne a Church-style
type system (that is, a syntax that only describes typing derivations for well-typed terms) separately
from the untyped language.

Terms resulting from di�erentiation satisfy additional invariants, and exploiting those invariants
helps simplify the proof. Hence we de�ne separate languages for change terms produced from
di�erentiation, again in untyped (λ∆A) and typed (λ∆A→) variants.

The syntax is summarized in Fig. C.1, the type systems in Fig. C.2, and the semantics in Fig. C.3.
The base languages are mostly standard, while the change languages pick a few di�erent choices.
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p ::= succ | add | . . .
m, n ::= . . . -- numbers
c ::= n | . . .
w ::= x | λx → t | 〈w,w〉 | c
s, t ::= w | w w | p w | let x = t in t
v ::= ρ [λx → t ] | 〈v, v〉 | c
ρ ::= x1 := v1, . . . , xn :=vn

(a) Base terms (λA).

dc ::= 0
dw ::= dx | λx dx → dt | 〈dw, dw〉 | dc
ds, dt ::= dw | dw w dw | 0p w dw |

let x = t; dx = dt in dt
dv ::= ρ ◆ dρ [λx dx → dt ] | 〈dv, dv〉 | dc
dρ ::= dx1 := dv1, . . . , dxn := dvn

(b) Change terms (λ∆A).

DC n n o = 0

D n x o = dx

D n λx → t o = λx dx → D n t o
D n 〈wa ,wb 〉 o = 〈D nwa o ,D nwb o〉

D n c o = DC n c o

D
�
wf wa

�
= D

�
wf

�
wa D nwa o

D n p w o = 0p w D nw o
D n let x = s in t o = let x = s; dx = D n s o in D n t o

(c) Di�erentiation.

τ ::= N | τa × τb | σ → τ

∆N = N
∆(τa × τb ) = ∆τa × ∆τb
∆(σ → τ ) = σ → ∆σ → ∆τ

∆ε = ε
∆(Γ, x : τ ) = ∆Γ, dx : ∆τ

(d) Types and contexts.

Figure C.1: ANF λ-calculus: λA and λ∆A.

C.1.1 Types and contexts
We show the syntax of types, contexts and change types in Fig. C.1d. We introduce types for
functions, binary products and naturals. Tuples can be encoded as usual through nested pairs.
Change types are mostly like earlier, but this time we use naturals as change for naturals (hence,
we cannot de�ne a total 	 operation).

We modify the de�nition of change contexts and environment changes to not contain entries
for base values: in this presentation we use separate environments for base variables and change
variables. This choice avoids the need to de�ne weakening lemmas.

C.1.2 Base syntax for λA
For convenience, we consider a λ-calculus in A-normal form. We do not parameterize this calculus
over language plugins to reduce mechanization overhead, but we de�ne separate syntactic categories
for possible extension points.

We show the syntax of terms in Fig. C.1a.
Meta-variable v ranges over (closed) syntactic values, that is evaluation results. Values are

numbers, pairs of values or closures. A closure is a pair of a function and an environment as usual.
Environments ρ are �nite maps from variables to syntactic values; in our mechanization using de
Bruijn indexes, environments are in particular �nite lists of syntactic values.

Meta-variable t ranges over arbitrary terms and w ranges over neutral forms. Neutral forms
evaluate to values in zero steps, but unlike values they can be open: a neutral form is either a
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`C n : N
T-Lit

`P succ : N→ N
T-Succ

`P add : (N × N) → N
T-Add

x : τ ∈ Γ
Γ ` x : τ

T-Var
`C c : τ
Γ ` c : τ

T-Const Γ ` t : τ Γ ` wf : σ → τ Γ ` wa : σ
Γ ` wf wa : τ

T-App

Γ, x : σ ` t : τ
Γ ` λx → t : σ → τ

T-Lam
Γ ` s : σ Γ, x : σ ` t : τ

Γ ` let x = s in t : τ
T-Let

Γ ` wa : τa Γ ` wb : τb
Γ ` 〈wa, wb 〉 : τa × τb

T-Pair

`P p : σ → τ Γ ` w : σ
Γ ` p w : τ

T-Prim

(a) λA→ base typing.

x : τ ∈ Γ
Γ `∆ dx : τ

T-DVar
`C c : ∆τ
Γ `∆ c : τ

T-DConst Γ `∆ dt : τ

Γ `∆ dwf : σ → τ Γ ` wa : σ Γ `∆ dwa : σ
Γ `∆ dwf wa dwa : τ

T-DApp

Γ ` s : σ Γ `∆ ds : σ Γ, x : σ `∆ dt : τ
Γ `∆ let x = s; dx = ds in dt : τ

T-DLet
Γ, x : σ `∆ dt : τ

Γ `∆ λx dx → dt : σ → τ
T-DLam

Γ `∆ dwa : τa Γ `∆ dwb : τb
Γ `∆ 〈dwa, dwb 〉 : τa × τb

T-DPair
`P p : σ → τ Γ ` w : σ Γ `∆ dw : σ

Γ `∆ 0p w dw : τ
T-DPrim

(b) λ∆A→ change typing. Judgement Γ `∆ dt : τ means that variables from both Γ and ∆Γ are in scope in dt, and
the �nal type is in fact ∆τ .

Figure C.2: ANF λ-calculus, λA→ and λ∆A→ type system.
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ρ ` p w ⇓1 P n p o (V nw o ρ) E-Prim
ρ ` w ⇓0 V nw o ρ E-Val ρ ` t ⇓n v

ρ ` s ⇓ns vs (ρ, x := vs ) ` t ⇓nt vt
ρ ` let x = s in t ⇓1+ns+nt vt

E-Let
ρ ` wf ⇓0 vf ρ ` wa ⇓0 va app vf va ⇓n v

ρ ` wf wa ⇓1+n v
E-App

app (ρ′ [λx → t ]) va = (ρ′, x := va ) ` t
V n x o ρ = ρ (x)
V n λx → t o ρ = ρ [λx → t ]
V n 〈wa, wb 〉 o ρ = 〈V nwa o ρ, V nwb o ρ 〉
V n c o ρ = c

P n succ o n = 1 + n
P n add o (m, n) = m + n

(a) Base semantics. Judgement ρ ` t ⇓n v says that ρ ` t, a pair of environment ρ and term t, evaluates to value
v in n steps, and app vf va ⇓n v constructs the pair to evaluate via app vf va .

ρ ◆ dρ `∆ dw ⇓ V∆ n dw o ρ dρ
E-DVal ρ ◆ dρ `∆ dt ⇓ dv

ρ ◆ dρ `∆ 0p w dw ⇓ P∆ n p o (V nw o ρ) (V∆ n dw o ρ dρ)
E-DPrim

ρ ◆ dρ `∆ dwf ⇓ dvf ρ ` wa ⇓ va ρ ◆ dρ `∆ dwa ⇓ dva dapp dvf va dva ⇓ dv

ρ ◆ dρ `∆ dwf wa dwa ⇓ dv
E-DApp

ρ ` s ⇓ vs ρ ◆ dρ `∆ ds ⇓ dvs (ρ, x := vs ) ◆ (dρ ; dx := dvs) `∆ dt ⇓ dvt

ρ ◆ dρ `∆ let x = s; dx = ds in dt ⇓ dvt
E-DLet

dapp (ρ′ ◆ dρ′ [λx dx → dt ]) va dva = (ρ′, x := va ) ◆ (dρ′, dx := dva ) `∆ dt

V∆ n dx o ρ dρ = dρ (dx)
V∆ n λx dx → dt o ρ dρ = ρ ◆ dρ [λx dx → dt ]
V∆ n 〈dwa, dwb 〉 o ρ dρ = 〈V∆ n dwa o ρ dρ, V∆ n dwb o ρ dρ 〉
V∆ n c o ρ dρ = c

P∆ n succ o n dn = dn
P∆ n add o 〈m, n〉 〈dm, dn〉 = dm + dn

(b) Change semantics. Judgement ρ ◆ dρ `∆ t ⇓ dv says that ρ ◆ dρ `∆ dt, a triple of environment ρ, change
environment dρ and change term t, evaluates to change value dv. and dapp dvf va dva ⇓ dv constructs the
triple to evaluate via dapp dvf va dva .

Figure C.3: ANF λ-calculus (λA and λ∆A), CBV semantics.
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variable, a constant value c, a λ-abstraction or a pair of neutral forms.
A term is either a neutral form, an application of neutral forms, a let expression or an application

of a primitive function p to a neutral form. Multi-argument primitives are encoded as primitives
taking (nested) tuples of arguments. Here we use literal numbers as constants and +1 and addition
as primitives (to illustrate di�erent arities), but further primitives are possible.

Notation C.1.1
We use subscripts ab for pair components, f a for function and argument, and keep using 12 for old
and new values. �

C.1.3 Change syntax for λ∆A
Next, we consider a separate language for change terms, which can be transformed into the base
language. This language supports directly the structure of change terms: base variables and change
variables live in separate namespaces. As we show later, for the typed language those namespaces
are represented by typing contexts Γ and ∆Γ: that is, the typing context for change variables is
always the change context for Γ.

We show the syntax of change terms in Fig. C.1b.
Change terms often take or bind two parameters at once, one for a base value and one for its

change. Since a function change is applied to a base input and a change for it at once, the syntax for
change term has a special binary application node dwf wa dwa ; otherwise, in ANF, such syntax
must be encoded through separate applications via let df a = dwf wa in df a dwa . In the same
way, closure changes ρ ◆ dρ [λx dx → dt ] bind two variables at once and close over separate
environments for base and change variables. Various other changes in the same spirit simplify
similar formalization and mechanization details.

In change terms, we write 0p as syntax for the derivative of p, evaluated as such by the semantics.
Strictly speaking, di�erentiation must map primitives to standard terms, so that the resulting
programs can be executed by a standard semantics; hence, we should replace 0p by a concrete
implementation of the derivative of p. However, doing so in a new formalization yields little
additional insight, and requires writing concrete derivatives of primitives as de Bruijn terms.

C.1.4 Di�erentiation
We show di�erentiation in Fig. C.1c. Di�erentiation maps constructs in the language of base terms
one-to-one to constructs in the language of change terms.

C.1.5 Typing λA→ and λ∆A→
We de�ne typing judgement for λA→ base terms and for λ∆A→ change terms. We show typing rules
in Fig. C.2b.

Typing for base terms is mostly standard. We use judgements `P p and `C c to specify typing of
primitive functions and constant values. For change terms, one could expect a type system only
proving judgements with shape Γ,∆Γ ` dt : ∆τ (where Γ,∆Γ stands for the concatenation of Γ and
∆Γ). To simplify inversion on such judgements (especially in Agda), we write instead Γ `∆ dt : τ , so
that one can verify the following derived typing rule for D n – o:

Γ ` t : τ
Γ `∆ D n t o : τ

T-Derive
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We also use mutually recursive typing judgment � v : τ for values and � ρ : Γ for environments,
and similarly �∆ dv : τ for change values and �∆ dρ : Γ for change environments. We only show
the (unsurprising) rules for � v : τ and omit the others. One could alternatively and equivalently
de�ne typing on syntactic values v by translating them to neutral forms w = v∗ (using unsur-
prising de�nitions in Appendix C.2) and reusing typing on terms, but as usual we prefer to avoid
substitution.

� n : N
TV-Nat

� va : τa � vb : τb
� 〈va , vb 〉 : τa × τb

TV-Pair � v : τ

Γ, x : σ ` t : τ � ρ : Γ
� ρ [λx → t ] : σ → τ

TV-Lam

C.1.6 Semantics
We present our semantics for base terms in Fig. C.3a. Our semantics gives meaning to pairs of
a environment ρ and term t, consistent with each other, that we write ρ ` t. By “consistent”
we mean that ρ contains values for all free variables of t, and (in a typed language) values with
compatible values (if Γ ` t : τ then � ρ : Γ). Judgement ρ ` t ⇓n v says that ρ ` t evaluates to
value v in n steps. The de�nition is given via a CBV big-step semantics. Following Acar, Ahmed,
and Blume [2008], we index our evaluation judgements via a step count, which counts in essence
β-reduction steps; we use such step counts later, to de�ne step-indexed logical relations. Since
our semantics uses environments, β-reduction steps are implemented not via substitution but via
environment extension, but the resulting step-counts are the same (Appendix C.2). Applying closure
vf = ρ ′ [λx → t ] to argument va produces environment-term pair (ρ ′, x := va) ` t, which we
abbreviate as app vf va . We’ll reuse this syntax later to de�ne logical relations.

In our mechanized formalization, we have additionally proved lemmas to ensure that this
semantics is sound relative to our earlier denotational semantics (adapted for the ANF syntax).

Evaluation of primitives is delegated to function P n – o –. We show complete equations for the
typed case; for the untyped case, we must turn P n – o – and P∆ n – o – into relations (or add explicit
error results), but we omit the standard details (see also Appendix C.6). For simplicity, we assume
evaluation of primitives takes one step. We conjecture higher-order primitives might need to be
assigned di�erent costs, but leave details for future work.

We can evaluate neutral forms w to syntactic values v using a simple evaluation function
V nw o ρ, and use P n p o v to evaluate primitives. When we need to omit indexes, we write ρ ` t ⇓ v
to mean that for some n we have ρ ` t ⇓n v.

We can also de�ne an analogous non-indexed big-step semantics for change terms, and we
present it in Fig. C.3b.

C.1.7 Type soundness
Evaluation preserves types in the expected way.

Lemma C.1.2 (Big-step preservation)
1. If Γ ` t : τ , � ρ : Γ and ρ ` t ⇓n v then � v : τ .

2. If Γ `∆ dt : τ , � ρ : Γ, �∆ dρ : Γ and ρ ◆ dρ `∆ dt ⇓ dv then �∆ dv : τ . �
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Proof. By structural induction on evaluation judgements. In our intrinsically typed mechanization,
this is actually part of the de�nition of values and big-step evaluation rules. �

To ensure that our semantics for λA→ is complete for the typed language, instead of proving
a small-step progress lemma or extending the semantics with errors, we just prove that all typed
terms normalize in the standard way. As usual, this fails if we add �xpoints or for untyped terms. If
we wanted to ensure type safety in such a case, we could switch to functional big-step semantics or
de�nitional interpreters [Amin and Rompf, 2017; Owens et al., 2016].

Theorem C.1.3 (CBV normalization)
For any well-typed and closed term ` t : τ , there exist a step count n and value v such that ` t ⇓n v.�

Proof. A variant of standard proofs of normalization for STLC [Pierce, 2002, Ch. 12], adapted for
big-step semantics rather than small-step semantics (similarly to Appendix C.3). We omit needed
de�nitions and refer interested readers to our Agda mechanization. �

We haven’t attempted to prove this lemma for arbitrary change terms (though we expect we
could prove it by de�ning an erasure to the base language and relating evaluation results), but we
prove it for the result of di�erentiating well-typed terms in Corollary C.3.2.

C.2 Validating our step-indexed semantics
In this section, we show how we ensure the step counts in our base semantics are set correctly, and
how we can relate this environment-based semantics to more conventional semantics, based on
substitution and/or small-step. We only consider the core calculus, without primitives, constants
and pairs. Results from this section are not needed later and we have proved them formally on
paper but not mechanized them, as our goal is to use environment-based big-step semantics in our
mechanization.

To this end we relate our semantics �rst with a big-step semantics based on substitution (rather
than environments) and then relating this alternative semantics to a small-step semantics. Results
in this section are useful to understand better our semantics and as a design aide to modify it, but
are not necessary to the proof, so we have not mechanized them.

As a consequence, we also conjecture that our logical relations and proofs could be adapted
to small-step semantics, along the lines of Ahmed [2006]. We however do not �nd that necessary.
While small-step semantics gives meaning to non-terminating programs, and that is important for
type soundness proofs, it does not seem useful (or possible) to try to incrementalize them, or to
ensure we do so correctly.

In proofs using step-indexed logical relations, the use of step-counts in de�nitions is often
delicate and tricky to get right. But Acar, Ahmed, and Blume provide a robust recipe to ensure
correct step-indexing in the semantics. To be able to prove the fundamental property of logical
relations, we ensure step-counts agree with the ones induced by small-step semantics (which counts
β-reductions). Such a lemma is not actually needed in other proofs, but only useful as a sanity
check. We also attempted using the style of step-indexing used by Amin and Rompf [2017], but
were unable to produce a proof. To the best of our knowledge all proofs using step-indexed logical
relations, even with functional big-step semantics [Owens et al., 2016], use step-indexing that agrees
with small-step semantics.

Unlike Acar, Ahmed, and Blume we use environments in our big-step semantics; this avoids the
need to de�ne substitution in our mechanized proof. Nevertheless, one can show the two semantics
correspond to each other. Our environments ρ can be regarded as closed value substitutions, as long
as we also substitute away environments in values. Formally, we write ρ∗(t) for the “homomorphic
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extension” of substitution ρ to terms, which produces other terms. If v is a value using environments,
we write w = v∗ for the result of translating that value to not use environments; this operation
produces a closed neutral form w. Operations ρ∗(t) and v∗ can be de�ned in a mutually recursive
way:

ρ∗(x) = (ρ (x))∗

ρ∗(λx → t) = λx → ρ∗(t)
ρ∗(w1 w2) = ρ

∗(w1) ρ
∗(w2)

ρ∗(let x = t1 in t2) = let x = ρ∗(t1) in ρ∗(t2)

(ρ [λx → t ])∗ = λx → ρ∗(t)

If ρ ` t ⇓n v in our semantics, a standard induction over the derivation of ρ ` t ⇓n v shows that
ρ∗(t) ⇓n v∗ in a more conventional big-step semantics using substitution rather than environments
(also following Acar, Ahmed, and Blume):

x ⇓0 x
Var’

λx → t ⇓0 λx → t
Lam’

t [x := w2 ] ⇓n w ′

(λx → t) w2 ⇓1+n w ′
App’

t1 ⇓n1 w1 t2 [x := w1 ] ⇓n2 w2

let x = t1 in t2 ⇓1+n1+n2 w2
Let’

In this form, it is more apparent that the step indexes count steps of β-reduction or substitution.
It’s also easy to see that this big-step semantics agrees with a standard small-step semantics

7→ (which we omit): if t ⇓n w then t 7→n w. Overall, the two statements can be composed, so
our original semantics agrees with small-step semantics: if ρ ` t ⇓n v then ρ∗(t) ⇓n v∗ and �nally
ρ∗(t) 7→n v∗. Hence, we can translate evaluation derivations using big-step semantics to derivations
using small-step semantics with the same step count.

However, to state and prove the fundamental property we need not prove that our semantics
is sound relative to some other semantics. We simply de�ne the appropriate logical relation for
validity and show it agrees with a suitable de�nition for ⊕.

Having de�ned our semantics, we proceed to de�ne extensional validity.

C.3 Validity, syntactically (λA→, λ∆A→)
For our typed language λA→, at least as long as we do not add �xpoint operators, we can de�ne
logical relations using big-step semantics but without using step-indexes. The resulting relations
are well-founded only because they use structural recursion on types. We present in Fig. C.4 the
needed de�nitions as a stepping stone to the de�nitions using step-indexed logical relations.

Following Ahmed [2006] and Acar, Ahmed, and Blume [2008], we encode extensional validity
through two mutually recursive type-indexed families of ternary logical relations, RV nτ o over
closed values and RC nτ o over terms (and environments).

These relations are analogous to notions we considered earlier and express similar informal
notions.

• With denotational semantics, we write dv B v1 ↪→ v2 : τ to say that change value dv ∈ n∆τ o
is a valid change from v1 to v2 at type τ . With operational semantics instead we write
(v1, dv, v2) ∈ RV nτ o, where v1, dv and v2 are now closed syntactic values.
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• For terms, with denotational semantics we write n dt o dρ B n t1 o ρ1 ↪→ n t2 o ρ2 : τ to
say that dt is a valid change from t1 and t2, considering the respective environments. With
operational semantics instead we write (ρ1 ` t1, ρ ◆ dρ `∆ dt, ρ2 ` t2) ∈ RC nτ o.

Since we use Church typing and only mechanize typed terms, we must include in all cases
appropriate typing assumptions.

Relation RC nτ o relates tuples of environments and computations, ρ1 ` t1, ρ ◆ dρ `∆ dt and
ρ2 ` t2: it holds if t1 evaluates in environment ρ1 to v1, and t2 evaluates in environment ρ2 to v2,
then dt must evaluate in environments ρ and dρ to a change value dv, with v1, dv, v2 related by
RV nτ o. The environments themselves need not be related: this de�nition characterizes validity
extensionally, that is, it can relate t1, dt and t2 that have unrelated implementations and unrelated
environments — in fact, even unrelated typing contexts. This �exibility is useful to when relating
closures of type σ → τ : two closures might be related even if they have close over environments
of di�erent shape. For instance, closures v1 = � [λx → 0] and v2 = (y := 0) [λx → y ] are related
by a nil change such as dv = � [λx dx → 0]. In Appendix C.5, we discuss instead an intensional
de�nition of validity.

In particular, for function types the relation RV nσ → τ o relates function values f1, df and f2 if
they map related input values (and for df input changes) to related output computations.

We also extend the relation on values to environments via RG n Γ o: environments are related if
their corresponding entries are related values.

RV nN o = { (n1, dn, n2) | n1, dn, n2 ∈ N and n1 + dn = n2 }
RV nτa × τb o = { (〈va1, vb1〉, 〈dva , dvb 〉, 〈va2, vb2〉) |

(va1, dva , va2) ∈ RV nτa o and (vb1, dvb , vb2) ∈ RV nτb o }
RV nσ → τ o = { (vf 1, dvf , vf 2) |

� vf 1 : σ → τ and �∆ dvf : σ → τ and � vf 2 : σ → τ

and
∀(v1, dv, v2) ∈ RV nσ o .
(app vf 1 v1, dapp dvf v1 dv, app vf 2 v2) ∈ RC nτ o }

RC nτ o = { (ρ1 ` t1, ρ ◆ dρ `∆ dt, ρ2 ` t2) |
(∃Γ1 Γ Γ2. Γ1 ` t1 : τ and Γ `∆ dt : τ and Γ2 ` t2 : τ )
and
∀v1 v2.
(ρ1 ` t1 ⇓ v1 and ρ2 ` t2 ⇓ v2) ⇒
∃dv. ρ ◆ dρ `∆ dt ⇓ dv and (v1, dv, v2) ∈ RV nτ o }

RG n ε o = { (�,�,�) }
RG n Γ, x : τ o = { ((ρ1, x := v1), (dρ, dx := dv), (ρ2, x := v2)) |

(ρ1, dρ, ρ2) ∈ RG n Γ o and (v1, dv, v2) ∈ RV nτ o }
Γ |= dt I t1 ↪→ t2 : τ = ∀(ρ1, dρ, ρ2) ∈ RG n Γ o .

(ρ1 ` t1, ρ1 ◆ dρ `∆ dt, ρ2 ` t2) ∈ RC nτ o

Figure C.4: De�ning extensional validity via logical relations and big-step semantics.
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Given these de�nitions, one can prove the fundamental property.

Theorem C.3.1 (Fundamental property: correctness of D n –o)
For every well-typed term Γ ` t : τ we have that Γ |= D n t o I t ↪→ t : τ . �

Proof sketch. By induction on the structure on terms, using ideas similar to Theorem 12.2.2. �

It also follows that D n t o normalizes:

Corollary C.3.2 (D n –o normalizes to a nil change)
For any well-typed and closed term ` t : τ , there exist value v and change value dv such that ` t ⇓ v,
`∆ D n t o ⇓ dv and (v, dv, v) ∈ RV nτ o. �

Proof. A corollary of the fundamental property and of the normalization theorem (Theorem C.1.3):
since t is well-typed and closed it normalizes to a value v for some step count (` t ⇓ v). The empty
environment change is valid: (�,�,�) ∈ RG n ε o, so from the fundamental property we get that
(` t, `∆ D n t o , ` t) ∈ RC nτ o. From the de�nition of RC nτ o and ` t ⇓ v it follows that there exists
dv such that `∆ D n t o ⇓ dv and (v, dv, v) ∈ RV nτ o. �

Remark C.3.3
Compared to prior work, these relations are unusual for two reasons. First, instead of just relating
two executions of a term, we relate two executions of a term with an execution of a change term.
Second, most such logical relations (including Ahmed [2006]’s one, but except Acar et al. [2008]’s
one) de�ne a logical relation (sometimes called logical equivalence) that characterizes contextual
equivalence, while we don’t.

Consider a logical equivalence de�ned through sets RC nτ o and RV nτ o. If (t1, t2) ∈ RC nτ o
holds and t1 terminates (with result v1), then t2 must terminate as well (with result v2), and their
results v1 and v2 must in turn be logically equivalent (v1, v2 ∈ RV nτ o). And at base types like N,
(v1, v2) ∈ RV nN o means that v1 = v2.

Here. instead, the fundamental property relates two executions of a term on di�erent inputs,
which might take di�erent paths during execution. In a suitably extended language, we could even
write term t = λx → if x = 0 then 1 else loop and run it on inputs v1 = 0 and v2 = 1: these
inputs are related by change dv = 1, but t will converge on v1 and diverge on v2. We must use
a semantics that allow such behavioral di�erence. Hence, at base type N, (v1, dv, v2) ∈ RV nN o
means just that dv is a change from v1 to v2, hence that v1 ⊕ dv is equivalent to v2 because ⊕ agrees
with extensional validity in this context as well. And if (ρ1 ` t1, ρ ◆ dρ `∆ dt, ρ2 ` t2) ∈ RC nτ o,
term t1 might converge while t2 diverges: only if both converge must their results be related.

These subtleties become more relevant in the presence of general recursion and non-terminating
programs, as in untyped language λA, or in a hypothetical extension of λA→ with �xpoint operators.�

C.4 Step-indexed extensional validity (λA→, λ∆A→)
Step-indexed logical relations de�ne approximations to a relation, to enable dealing with non-
terminating programs. Logical relations relate the behavior of multiple terms during evaluation;
with step-indexed logical relations, we can take a bound k and restrict attention to evaluations that
take at most k steps overall, as made precise by the de�nitions. Crucially, entities related at step
count k are also related at any step count j < k . Conversely, the higher the step count, the more
precise the de�ned relation. In the limit, if entities are related at all step counts, we simply say they
are related. This construction of limits resembles various other approaches to constructing relations
by approximations, but the entire framework remains elementary. In particular, the relations are
de�ned simply because they are well-founded (that is, only de�ned by induction on smaller numbers).
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Proofs of logical relation statement need to deal with step-indexes, but when they work (as here)
they are otherwise not much harder than other syntactic or logical relation proofs.

For instance, if we de�ne equivalence as a step-indexed logical relation, we can say that two
terms are equivalent for k or fewer steps, even if they might have di�erent behavior with more
steps available. In our case, we can say that a change appears valid at step count k if it behaves like
a valid change in “observations” using at most k steps.

Like before, we de�ne a relation on values and one on computations as sets RV nτ o and RC nτ o.
Instead of indexing the sets with the step-count, we add the step counts to the tuples they contain:
so for instance (k, v1, dv, v2) ∈ RV nτ o means that value v1, change value dv and value v2 are
related at step count k (or k-related), and similarly for RC nτ o.

The details or the relation de�nitions are subtle, but follow closely the use of step-indexing
by Acar, Ahmed, and Blume [2008]. We add mention of changes, and must decide how to use
step-indexing for them.

How step-indexing proceeds We explain gradually in words how the de�nition proceeds.
First, we say k-related function values take j-related arguments to j-related results for all j

less than k . That is re�ected in the de�nition for RV nσ → τ o: it contains (k, vf 1, dvf , vf 2) if, for
all (j, v1, dv, v2) ∈ RV nσ o) with j < k, the result of applications are also j-related. However, the
result of application are not syntactic applications encoding vf 1 v14. It is instead necessary to use
app vf 1 v1, the result of one step of reduction. The two de�nitions are not equivalent because a
syntactic application would take one extra step to reduce.

The de�nition for computations takes longer to describe. Roughly speaking, computations are
k-related if, after j steps of evaluations (with j < k), they produce values related at k − j steps;
in particular, if the computations happen to be neutral forms and evaluate in zero steps, they’re
k-related as computations if the values they produce are k-related. In fact, the rule for evaluation has
a wrinkle. Formally, instead of saying that computations (ρ1 ` t1, ρ ◆ dρ `∆ dt, ρ2 ` t2) are k-related,
we say that (k, ρ1 ` t1, ρ ◆ dρ `∆ dt, ρ2 ` t2) ∈ RC nτ o. We do not require all three computations
to take j steps. Instead, if the �rst computation ρ1 ` t1 evaluates to a value in j < k steps, and the
second computation ρ2 ` t2 evaluates to a value in any number of steps, then the change computation
ρ ◆ dρ `∆ dt must also terminate to a change value dv (in an unspeci�ed number of steps), and the
resulting values must be related at step-count k − j (that is, (k − j, v1, dv, v2) ∈ RV nτ o).

What is new in the above de�nition is the addition of changes, and the choice to allow change
term dt to evaluate to dv in an unbounded number of steps (like t2), as no bound is necessary for
our proofs. This is why the semantics we de�ned for change terms has no step counts.

Well-foundedness of step-indexed logical relations has a small wrinkle, because k − j need not
be strictly less than k. But we de�ne the two relations in a mutually recursive way, and the pair of
relations at step-count k is de�ned in terms of the pair of relation at smaller step-count. All other
recursive uses of relations are at smaller step-indexes.

In this section we index the relation by both types and step-indexes, since this is the one we use
in our mechanized proof. This relation is de�ned by structural induction on types. We show this
de�nition in Fig. C.5. Instead, in Appendix C.6 we consider untyped λ-calculus and drop types. The
resulting de�nition is very similar, but is de�ned by well-founded recursion on step-indexes.

Again, since we use Church typing and only mechanize typed terms, we must include in all cases
appropriate typing assumptions. This choice does not match Ahmed [2006] but is one alternative
she describes as equivalent. Indeed, while adapting the proof the extra typing assumptions and
proof obligations were not a problem.

4That happens to be illegal syntax in this presentation, but can be encoded for instance as f := vf 1, x := v1 ` (f x); and
the problem is more general.
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RV nN o = { (k, n1, dn, n2) | n1, dn, n2 ∈ N and n1 + dn = n2 }
RV nτa × τb o = { (k, 〈va1, vb1〉, 〈dva , dvb 〉, 〈va2, vb2〉) |

(k, va1, dva , va2) ∈ RV nτa o and (k, vb1, dvb , vb2) ∈ RV nτb o }
RV nσ → τ o = { (k, vf 1, dvf , vf 2) |

� vf 1 : σ → τ and �∆ dvf : σ → τ and � vf 2 : σ → τ

and
∀(j, v1, dv, v2) ∈ RV nσ o . j < k ⇒
(j, app vf 1 v1, dapp dvf v1 dv, app vf 2 v2) ∈ RC nτ o }

RC nτ o = { (k, ρ1 ` t1, ρ ◆ dρ `∆ dt, ρ2 ` t2) |
(∃Γ1 Γ Γ2. Γ1 ` t1 : τ and Γ `∆ dt : τ and Γ2 ` t2 : τ )
and
∀j v1 v2.
(j < k and ρ1 ` t1 ⇓j v1 and ρ2 ` t2 ⇓ v2) ⇒
∃dv. ρ ◆ dρ `∆ dt ⇓ dv and (k − j, v1, dv, v2) ∈ RV nτ o }

RG n ε o = { (k,�,�,�) }
RG n Γ, x : τ o = { (k, (ρ1, x := v1), (dρ, dx := dv), (ρ2, x := v2)) |

(k, ρ1, dρ, ρ2) ∈ RG n Γ o and (k, v1, dv, v2) ∈ RV nτ o }
Γ |= dt I t1 ↪→ t2 : τ = ∀(k, ρ1, dρ, ρ2) ∈ RG n Γ o .

(k, ρ1 ` t1, ρ1 ◆ dρ `∆ dt, ρ2 ` t2) ∈ RC nτ o

Figure C.5: De�ning extensional validity via step-indexed logical relations and big-step semantics.

At this moment, we do not require that related closures contain related environments: again,
we are de�ning extensional validity.

Given these de�nitions, we can prove that all relations are downward-closed: that is, relations at
step-count n imply relations at step-count k < n.

Lemma C.4.1 (Extensional validity is downward-closed)
Assume k ≤ n.

1. If (n, v1, dv, v2) ∈ RV nτ o then (k, v1, dv, v2) ∈ RV nτ o.

2. If (n, ρ1 ` t1, ρ ◆ dρ `∆ dt, ρ2 ` t2) ∈ RC nτ o then

(k, ρ1 ` t1, ρ ◆ dρ `∆ dt, ρ2 ` t2) ∈ RC nτ o .

3. If (n, ρ1, dρ, ρ2) ∈ RG n Γ o then (k, ρ1, dρ, ρ2) ∈ RG n Γ o. �

Proof sketch. For RV nτ o, case split on τ and expand hypothesis and thesis. If τ = N they coincide.
For RV nσ → τ o, parts of the hypothesis and thesis match. For some relation P , the rest of the
hypothesis has shape ∀j<n. P (j, v1, dv, v2) and the rest of the thesis has shape ∀j<k. P (j, v1, dv, v2).
Assume j < k . We must prove P (j, v1, dv, v2), but since j < k ≤ n we can just apply the hypothesis.
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The proof for RC nτ o follows the same idea as RV nσ → τ o.
For RG n Γ o, apply the theorem for RV nτ o to each environments entry x : τ . �

At this point, we prove the fundamental property.

Theorem C.4.2 (Fundamental property: correctness of D n –o)
For every well-typed term Γ ` t : τ we have that Γ |= D n t o I t ↪→ t : τ . �

Proof sketch. By structural induction on typing derivations, using ideas similar to Theorem C.3.1
and relying on Lemma C.4.1 to reduce step counts where needed. �

C.5 Step-indexed intensional validity
Up to now, we have de�ned when a function change is valid extensionally, that is, purely based on
its behavior, as we have done earlier when using denotational semantics. We conjecture that with
these one can de�ne ⊕ and prove it agrees with extensional validity. However, we have not done so.

Instead, we modify de�nitions in Appendix C.4 to de�ne validity intensionally. To ensure that
f1⊕df = f2 (for a suitable ⊕) we choose to require that closures f1, df and f2 close over environments
of matching shapes. This change does not complicate the proof of the fundamental lemma: all the
additional proof obligations are automatically satis�ed.

However, it can still be necessary to replace a function value with a di�erent one. Hence
we extend our de�nition of values to allow replacement values. Closure replacements produce
replacements as results, so we make replacement values into valid changes for all types. We must
also extend the change semantics, both to allow evaluating closure replacements, and to allow
derivatives of primitive to handle replacement values.

We have not added replacement values to the syntax, so currently they can just be added to
change environments, but we don’t expect adding them to the syntax would cause any signi�cant
trouble.

We present the changes described above for the typed semantics. We have successfully mecha-
nized this variant of the semantics as well. Adding replacement values !v requires extending the
de�nition of change values, evaluation and validity. We add replacement values to change values:

dv := . . . | !v

Derivatives of primitives, when applied to replacement changes, must recompute their output. The
required additional equations are not interesting, but we show them anyway for completeness:

P∆ n succ o n1 (!n2) = !(n2 + 1)
P∆ n add o 〈_, _〉 (!〈m2, n2〉) = !(m2 + n2)
P∆ n add o p1 (dp @ 〈dm, !n2〉) = !(P n add o (p1 ⊕ dp))
P∆ n add o p1 (dp @ 〈!m, dv〉) = !(P n add o (p1 ⊕ dp))

Evaluation requires a new rule, E-BangApp, to evaluate change applications where the function
change evaluates to a replacement change:

ρ ◆ dρ `∆ dwf ⇓ !vf ρ ` wa ⇓ va ρ ◆ dρ `∆ dwa ⇓ dva app vf (va ⊕ dva ) ⇓ v

ρ ◆ dρ `∆ dwf wa dwa ⇓ !v
E-BangApp

Evaluation rule E-BangApp requires de�ning ⊕ on syntactic values. We de�ne it intensionally:
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De�nition C.5.1 (Update operator ⊕)
Operator ⊕ is de�ned on values by the following equations, where match` ρ dρ (whose de�nition
we omit) tests if ρ and dρ are environments for the same typing context Γ.

v1 ⊕ !v2 = v2
ρ [λx → t ] ⊕ dρ [λx dx → dt ] =
if match` ρ dρ then

-- If ρ and dρ are environments for the same typing context Γ:
(ρ ⊕ dρ) [λx → t ]

else
-- otherwise, the input change is invalid, so just give
-- any type-correct result:

ρ [λx → t ]
n ⊕ dn = n + dn
〈va1, vb1〉 ⊕ 〈dva , dvb 〉 = 〈va1 ⊕ dva , vb1 ⊕ dvb 〉

-- An additional equation is needed in the untyped language,
-- not in the typed one. This equation is for invalid
-- changes, so we can just return v1:

v1 ⊕ dv = v1

We de�ne ⊕ on environments for matching contexts to combine values and changes pointwise:

(x1 := v1, . . . , xn :=vn) ⊕ (dx1 := dv1, . . . , dxn := dvn) =
(x1 := v1 ⊕ dv1, . . . , xn :=vn ⊕ dvn)

The de�nition of update for closures can only update them in few cases, but this is not a problem:
as we show in a moment, we restrict validity to the closure changes for which it is correct.

We ensure replacement values are accepted as valid for all types, by requiring the following
equation holds (hence, modifying all equations for RV n – o; we omit details):

RV nτ o ⊇ { (k, v1, !v2, v2) | � v1 : τ and � v2 : τ } (C.1)

where we write � v : τ to state that value v has type τ ; we omit the unsurprising rules for this
judgement.

To restrict valid closure changes, RV nσ → τ o now requires that related elements satisfy
predicate matchImpl vf 1 dvf vf 2, de�ned by the following equations:

matchImpl
(ρ1 [λx → t ])
(ρ1 ◆ dρ [λx dx → D n t o])
((ρ1 ⊕ dρ) [λx → t ]) = True

matchImpl _ _ _ = False

In other words, validity (k, vf 1, dvf , vf 2) ∈ RV nσ → τ o now requires via matchImpl that the
base closure environment ρ1 and the base environment of the closure change dvf coincide, that
ρ2 = ρ1 ⊕ dρ, and that vf 1 and vf 2 have λx → t as body while dvf has body λx dx → D n t o.

To de�ne intensional validity for function changes, RV nσ → τ o must use matchImpl and
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explicitly support replacement closures to satisfy Eq. (C.1). Its de�nition is as follows:

RV nσ → τ o = { (k, vf 1, dvf , vf 2) |
� vf 1 : σ → τ and �∆ dvf : σ → τ and � vf 2 : σ → τ

and
matchImpl vf 1 dvf vf 2
and
∀(j, v1, dv, v2) ∈ RV nσ o . j < k ⇒
(j, app vf 1 v1, dapp dvf v1 dv, app vf 2 v2) ∈ RC nτ o } ∪
{ (k, vf 1, !vf 2, vf 2) | � vf 1 : σ → τ and � vf 2 : σ → τ }

De�nitions of RV n – o for other types can be similarly updated to support replacement changes
and satisfy Eq. (C.1).

Using these updated de�nitions, we can again prove the fundamental property, with the same
statement as Theorem C.4.2. Furthermore, we now prove that ⊕ agrees with validity.

Theorem C.5.2 (Fundamental property: correctness of D n –o)
For every well-typed term Γ ` t : τ we have that Γ |= D n t o I t ↪→ t : τ . �

Theorem C.5.3 (⊕ agrees with step-indexed intensional validity)
If (k, v1, dv, v2) ∈ RV nτ o then v1 ⊕ dv = v2. �

Proof. By induction on types. For type N, validity coincides with the thesis. For type 〈τa ,τb 〉, we
must apply the induction hypothesis on both pair components.

For closures, validity requires that v1 = ρ1 [λx → t ], dv = dρ [λx dx → D n t o], v2 =
ρ2 [λx → t ] with ρ1 ⊕ dρ = ρ2, and there exists Γ such that Γ, x : σ ` t : τ . Moreover, from validity
we can show that ρ and dρ have matching shapes: ρ is an environment matching Γ and dρ is a
change environment matching ∆Γ. Hence, v1 ⊕ dv can update the stored environment, and we can
show the thesis by the following calculation:

v1 ⊕ dv = ρ1 [λx → t ] ⊕ dρ [λx dx → dt ] =
(ρ1 ⊕ dρ) [λx → t ] = ρ2 [λx → t ] = v2 �

We can also de�ne 0 intensionally,as a metafunction on values and environments, and prove
it correct. For closures, we di�erentiate the body and recurse on the environment. The de�nition
extends from values to environments variable-wise, so we omit the standard formal de�nition.
De�nition C.5.4 (Nil changes 0)
Nil changes on values are de�ned as follows:

0ρ [λx→t ] = ρ ◆ 0ρ [λx dx → D n t o]
0〈a,b〉 = 〈0a, 0b〉
0n = 0

Lemma C.5.5 (0 produces valid changes)
For all values � v : τ and indexes k, we have (k, v, 0v, v) ∈ RV nτ o. �

Proof sketch. By induction on v. For closures we must apply the fundamental property (Theo-
rem C.5.2) to D n t o. �
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Because 0 transforms closure bodies, we cannot de�ne it internally to the language. This problem
can be avoided by defunctionalizing functions and function changes, as we do in Appendix D.

We conclude with the overall correctness theorem, analogous to Corollary 13.4.5.

Corollary C.5.6 (D n –o is correct, corollary)
Take any term t that is well-typed (Γ ` t : τ ) and any suitable environments ρ1, dρ, ρ2, intensionally
valid at any step count (∀k. (k, ρ1, dρ, ρ2) ∈ RG n Γ o). Assume t terminates in both the old envi-
ronment ρ1 and the new environment ρ2, evaluating to output values v1 and v2 (ρ1 ` t ⇓ v1 and
ρ2 ` t ⇓ v2). Then D n t o evaluates in environment ρ and change environment dρ to a change value
dv (ρ1 ◆ dρ `∆ t ⇓ dv), and dv is a valid change from v1 to v2, so that v1 ⊕ dv = v2. �

Proof. Follows immediately from Theorem C.5.2 and Theorem C.5.3. �

C.6 Untyped step-indexed validity (λA, λ∆A)
By removing mentions of types from step-indexed validity (intensional or extensional, though we
show extensional de�nitions), we can adapt it to an untyped language. We can still distinguish
between functions, numbers and pairs by matching on values themselves, instead of matching on
types. Without types, typing contexts Γ now degenerate to lists of free variables of a term; we still
use them to ensure that environments contain enough valid entries to evaluate a term. Validity
applies to terminating executions, hence we need not consider executions producing dynamic type
errors when proving the fundamental property.

We show resulting de�nitions for extensional validity in Fig. C.6; but we can also de�ne inten-
sional validity and prove the fundamental lemma for it. As mentioned earlier, for λA we must turn
P n – o – and P∆ n – o – into relations and update E-Prim accordingly.

The main di�erence in the proof is that this time, the recursion used in the relations can only be
proved to be well-founded because of the use of step-indexes; we omit details [Ahmed, 2006].

Otherwise, the proof proceeds just as earlier in Appendix C.4: We prove that the relations are
downward-closed, just like in Lemma C.4.1 (we omit the new statement), and we prove the new
fundamental lemma by induction on the structure of terms (not of typing derivations).

Theorem C.6.1 (Fundamental property: correctness of D n –o)
If FV (t) ⊆ Γ then we have that Γ |= D n t o I t ↪→ t. �

Proof sketch. Similar to the proof of Theorem C.4.2, but by structural induction on terms and
complete induction on step counts, not on typing derivations.

However, we can use the induction hypothesis in the same ways as in earlier proofs for typed
languages: all uses of the induction hypothesis in the proof are on smaller terms, and some also at
smaller step counts. �

C.7 General recursion in λA→ and λ∆A→
We have sketched informally in Sec. 15.1 how to support �xpoint combinators.

We have also extended our typed languages with a �xpoint combinators and proved them correct
formally (not mechanically, yet). In this section, we include the needed de�nitions to make our
claim precise. They are mostly unsurprising, if long to state.

Since we are in a call-by-value setting, we only add recursive functions, not recursive values in
general. To this end, we replace λ-abstraction λx → t with recursive function rec f x → t, which
binds both f and x in t, and replaces f with the function itself upon evaluation.
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RV = { (k, n1, dn, n2) | n1, dn, n2 ∈ N and n1 + dn = n2 } ∪
{ (k, vf 1, dvf , vf 2) |
∀(j, v1, dv, v2) ∈ RV . j < k ⇒
(j, app vf 1 v1, dapp dvf v1 dv, app vf 2 v2) ∈ RC } ∪
{ (k, 〈va1, vb1〉, 〈dva , dvb 〉, 〈va2, vb2〉) |
(k, va1, dva , va2) ∈ RV and (k, vb1, dvb , vb2) ∈ RV }

RC = { (k, ρ1 ` t1, ρ ◆ dρ `∆ dt, ρ2 ` t2) |
∀j v1 v2.
(j < k and ρ1 ` t1 ⇓j v1 and ρ2 ` t2 ⇓ v2) ⇒
∃dv. ρ ◆ dρ `∆ dt ⇓ dv and (k − j, v1, dv, v2) ∈ RV }

RG n ε o = { (k,�,�,�) }
RG n Γ, x o = { (k, (ρ1, x := v1), (dρ, dx := dv), (ρ2, x := v2)) |

(k, ρ1, dρ, ρ2) ∈ RG n Γ o and (k, v1, dv, v2) ∈ RV }
Γ |= dt I t1 ↪→ t2 = ∀(k, ρ1, dρ, ρ2) ∈ RG n Γ o .

(k, ρ1 ` t1, ρ1 ◆ dρ `∆ dt, ρ2 ` t2) ∈ RC

Figure C.6: De�ning extensional validity via untyped step-indexed logical relations and big-step
semantics.

The associated small-step reduction rule would be (rec f x → t) v → t [x :=v, f :=rec f x → t ].
As before, we formalize reduction using big-step semantics.

Typing rule T-Lam is replaced by a rule for recursive functions:

Γ, f : σ → τ , x : σ ` t : τ
Γ ` rec f x → t : σ → τ

T-Rec

We replace closures with recursive closures in the de�nition of values:

w ::= rec f x → t | . . .
v ::= ρ [rec f x → t ] | . . .

We also modify the semantics for abstraction and application. Rules E-Val and E-App are unchanged:
it is su�cient to adapt the de�nitions of V n – o – and app, so that evaluation of a function value vf
has access to vf in the environment.

V n rec f x → t o ρ = ρ [rec f x → t ]
app (vf @ (ρ ′ [rec f x → t ])) va =
(ρ ′, f := vf , x := va) ` t

Like in Haskell, we write x @ p in equations to bind an argument as metavariable x and match it
against pattern p.

Similarly, we modify the language of changes, the de�nition of di�erentiation, and evaluation
metafunctions V∆ n – o – and dapp. Since the derivative of a recursive function f = rec f x → t
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can call the base function, we remember the original function body t in the derivative, together
with its derivative D n t o. This should not be surprising: in Sec. 15.1, where recursive functions are
de�ned using letrec, a recursive function f is in scope in the body of its derivative df . Here we use
a di�erent syntax, but still ensure that f is in scope in the body of derivative df . The de�nitions are
otherwise unsurprising, if long.

dw ::= drec f df x dx → t ◆ dt | . . .
dv ::= ρ ◆ dρ [drec f df x dx → t ◆ dt ] | . . .
D n rec f x → t o = drec f df x dx → t ◆ D n t o
V∆ ndrec f df x dx → dt o ρ dρ =
ρ ◆ dρ [drec f df x dx → t ◆ dt ]

dapp (dvf @ (ρ ′ ◆ dρ ′ [rec f df x dx → dt ])) va dva =
let vf = ρ ′ [rec f x → t ]
in (ρ ′, f := vf , x := va) ◆ (dρ ′, df := dvf , dx := dva) `∆ dt

Γ, f : σ → τ , x : σ ` t : τ Γ, f : σ → τ , x : σ `∆ dt : τ
Γ `∆ drec f df x dx → t ◆ dt : σ → τ

T-DRec

We can adapt the proof of the fundamental property to the use of recursive functions.

Theorem C.7.1 (Fundamental property: correctness of D n –o)
For every well-typed term Γ ` t : τ we have that Γ |= D n t o I t ↪→ t : τ . �

Proof sketch. Mostly as before, modulo one interesting di�erence: To prove the fundamental
property for recursive functions at step-count k, this time we must use the fundamental prop-
erty inductively on the same term, but at step-count j < k. This happens because to evaluate
dw = D n rec f x → t o we evaluate D n t o with the value dv for dw in the environment: to show
this invocation is valid, we must show dw is itself a valid change. But the step-indexed de�nition to
RV nσ → τ o constrains the evaluation of the body only ∀j < k.

C.8 Future work
We have shown that ⊕ and 0 agree with validity, which we consider a key requirement of a core
ILC proof. However, change structures support further operators. We leave operator 	 for future
work, though we are not aware of particular di�culties. However, } deserves special attention.

C.8.1 Change composition
We have looked into change composition, and it appears that composition of change expression is
not always valid, but we conjecture that composition of change values preserves validity. Showing
that change composition is valid appears related to showing that Ahmed’s logical equivalence is a
transitive relation, which is a subtle issue. She only proves transitivity in a typed setting and with
a stronger relation, and her proof does not carry over directly; indeed, there is no corresponding
proof in the untyped setting of Acar, Ahmed, and Blume [2008].

However, the failure of transitivity we have veri�ed is not overly worrisome: the problem is
that transitivity is too strong an expectation in general. Assume that Γ |= de1 I e1 ↪→ e2 and
Γ |= de2 I e2 ↪→ e3, and try to show that Γ |= de1 } de2 I e1 ↪→ e3: that is, very roughly and
ignoring the environments, we can assume that e1 and e3 terminate, and have to show that their
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result satisfy some properties. To use both our hypotheses, we need to know that e1, e2 and e3
all terminate, but we have no such guaranteed for e2. Indeed, if e2 always diverges (because it is,
say, the diverging term ω = (λx → x x) (λx → x x)), then de1 and de2 are vacuously valid. If
e1 and e3 terminate, we can’t expect de1 } de2 to be a change between them. To wit, take e1 = 0,
e2 = ω, e3 = 10, and de1 = de2 = 0. We can verify that for any Γ we have Γ |= de1 I e1 ↪→ e2 and
Γ |= de2 I e2 ↪→ e3, while Γ |= de1 } de2 I e1 ↪→ e3 means the absurd Γ |= 0 } 0 I 0 ↪→ 10.

Apossible �x Does transitivity hold if e2 terminates? If (k, e1, de1, e2) ∈ RC nτ o and (k, e2, de2, e3) ∈
RC nτ o, we still cannot conclude anything. But like in Ahmed [2006], if e2 amd e3 are related at all
step counts, that is, if (k, e1, de1, e2) ∈ RC nτ o and (∀n. (n, e2, de2, e3) ∈ RC nτ o), and if additionally
e2 terminates, we conjecture that Ahmed’s proof goes through. We have however not yet examined
all details.

C.9 Development history
The proof strategy used in this chapter comes from a collaboration between me and Yann Régis-
Gianas, who came up with the general strategy and the �rst partial proofs for untyped λ-calculi.
After we both struggled for a while to set up step-indexing correctly enough for a full proof, I �rst
managed to give the de�nitions in this chapter and complete the proofs here described. Régis-Gianas
then mechanized a variant of our proof for untyped λ-calculus in Coq [Giarrusso et al., Submitted],
that appears here in Sec. 17.3. That proof takes a few di�erent choices, and unfortunately strictly
speaking neither proof subsumes the other. (1) We also give a non-step-indexed syntactic proof
for simply-typed λ-calculus, together with proofs de�ning validity extensionally. (2) To support
remembering intermediate results by conversion to cache-transfer-style (CTS), Régis-Gianas’ proof
uses a lambda-lifted A’NF syntax instead of plain ANF. (3) Régis-Gianas’ formalization adds to
change values a single token 0, which is a valid nil change for all valid values. Hence, if we know
a change is nil, we can erase it. As a downside, evaluating df a da when df is 0 requires looking
up f . In our presentation, instead, if f and g are di�erent function values, they have di�erent nil
changes. Such nil changes carry information, so they can be evaluated directly, but they cannot be
erased. Techniques in Appendix D enable erasing and reconstructing a nil change df for function
value f as long as the value of f is available.

C.10 Conclusion
In this chapter we have shown how to construct novel models for ILC by using (step-indexed)
logical relations, and have used this technique to deliver a new syntactic proof of correctness for ILC
for simply-typed lambda-calculus and to deliver the �rst proof of correctness of ILC for untyped
λ-calculus. Moreover, our proof appears rather close to existing logical-relations proofs, hence we
believe it should be possible to translate other results to ILC theorems.

By formally de�ning intensional validity for closures, we provide a solid foundation for the use
of defunctionalized function changes (Appendix D).

This proof builds on Ahmed [2006]’s work on step-indexed logical relations, which enable
handling of powerful semantics feature using rather elementary techniques. The only downside is
that it can be tricky to set up the correct de�nitions, especially for a slightly non-standard semantics
like ours. As an exercise, we have shown that the our semantics is equivalent to more conventional
presentations, down to the produced step counts.
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Appendix D

Defunctionalizing function
changes

In Chapter 12, and throughout most of Part II, we represent function changes as functions, which can
only be applied. However, incremental programs often inspect changes to decide how to react to them
most e�ciently. Also inspecting function changes would help performance further. Representing
function changes as closures, as we do in Chapter 17 and Appendix C, allows implementing some
operations more e�cient, but is not fully satisfactory. In this chapter, we address these restrictions
by defunctionalizing functions and function changes, so that we can inspect both at runtime without
restrictions.

Once we defunctionalize function changes, we can detect at runtime whether a function change
is nil. As we have mentioned in Sec. 16.3, nil function changes can typically be handled more
e�ciently. For instance, consider t = map f xs, a term that maps function f to each element of
sequence xs. In general, D n t o = dmap f df xs dxs must handle any change in dxs (which we
assume to be small) but also apply function change df to each element of xs (which we assume to
be big). However, if df is nil we can skip this step, decreasing time complexity of dmap f df xs dxs
from O (|xs | + |dxs |) to O (|dxs |).

We will also present a change structure on defunctionalized function changes, and show that
operations on defunctionalized function changes become cheaper.

D.1 Setup
We write incremental programs based on ILC by manually writing Haskell code, containing both
manually-written plugin code, and code that is transformed systematically, based on informal
generalizations and variants of D n – o. Our main goal is to study variants of di�erentiation and
of encodings in Haskell, while also studying language plugins for non-trivial primitives, such as
di�erent sorts of collections. We make liberal use of GHC extensions where needed.

Code in this chapter has been extracted and type-checked, though we elide a few details (mostly
language extensions and imports from the standard library). Code in this appendix is otherwise
self-contained. We have also tested a copy of this code more extensively.

As sketched before, we de�ne change structure inside Haskell.

class ChangeStruct t where
-- Next line declares ∆t as an injective type function

215
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type ∆t = r | r → t
(⊕) :: t → ∆t → t
oreplace :: t → ∆t

class ChangeStruct t ⇒ NilChangeStruct t where
0 :: t → ∆t

class ChangeStruct a⇒ CompChangeStruct a where
-- Compose change dx1 with dx2, so that
-- x ⊕ (dx1 } dx2) ≡ x ⊕ dx1 ⊕ dx2.
(}) :: ∆a→ ∆a→ ∆a

With this code we de�ne type classes ChangeStruct, NilChangeStruct and CompChangeStruct. We
explain each of the declared members in turn.

First, type ∆t represents the change type for type t. To improve Haskell type inference, we
declare that ∆ is injective, so that ∆t1 = ∆t2 implies t1 = t2. This forbids some potentially useful
change structures, but in exchange it makes type inference vastly more usable.

Next, we declare ⊕, 0 and } as available to object programs. Last, we introduce oreplace to
construct replacement changes, characterized by the absorption law x ⊕ oreplace y = y for all x.
Function oreplace encodes !t, that is the bang operator. We use a di�erent notation because ! is
reserved for other purposes in Haskell.

These typeclasses omit operation 	 intentionally: we do not require that change structures
support a proper di�erence operation. Nevertheless, as discussed b 	 a can be expressed through
oreplace b.

We can then di�erentiate Haskell functions — even polymorphic ones. We show a few trivial
examples to highlight how derivatives are encoded in Haskell, especially polymorphic ones.

-- The standard id function:
id :: a→ a
id x = x

-- and its derivative:
did :: a→ ∆a→ ∆a
did x dx = dx
instance (NilChangeStruct a,ChangeStruct b) ⇒

ChangeStruct (a→ b) where
type ∆(a→ b) = a→ ∆a→ ∆b
f ⊕ df = λx → f x ⊕ df x 0x
oreplace f = λx dx → oreplace (f (x ⊕ dx))

instance (NilChangeStruct a,ChangeStruct b) ⇒
NilChangeStruct (a→ b) where

0f = oreplace f
-- Same for apply:

apply :: (a→ b) → a→ b
apply f x = f x
dapply :: (a→ b) → ∆(a→ b) → a→ ∆a→ ∆b
dapply f df x dx = df x dx

Which polymorphism? As visible here, polymorphism does not cause particular problems.
However, we only support ML (or prenex) polymorphism, not �rst-class polymorphism, for two
reasons.
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First, with �rst-class polymorphism, we can encode existential types ∃X . T , and two values
v1, v2 of the same existential type ∃X . T can hide di�erent types T1, T2, Hence, a change between v1
and v2 requires handling changes between types. While we discuss such topics in Chapter 18, we
avoid them here.

Second, prenex polymorphism is a small extension of simply-typed lambda calculus metatheoreti-
cally. We can treat prenex-polymorphic de�nitions as families of monomorphic (hence simply-typed)
de�nitions; to each de�nition we can apply all the ILC theory we developed to show di�erentiation
is correct.

D.2 Defunctionalization
Defunctionalization is a whole-program transformation that turns a program relying on �rst-class
functions into a �rst-order program. The resulting program is expressed in a �rst-order language
(often a subset of the original language); closures are encoded by data values, which embed both the
closure environment and a tag to distinguish di�erent function. Defunctionalization also generates
a function that interprets encoded closures, which we call applyFun.

In a typed language, defunctionalization can be done using generalized algebraic datatypes
(GADTs) [Pottier and Gauthier, 2004]. Each �rst-class function of type σ → τ is replaced by a value
of a new GADT Fun σ τ , that represents defunctionalized function values and has a constructor for
each di�erent function. If a �rst-class function t1 closes over x :: τ1, the corresponding constructor
C1 will take x :: τ1 as an argument. The interpreter for defunctionalized function values has type
signature applyFun :: Fun σ τ → σ → τ . The resulting programs are expressed in a �rst-order
subset of the original programming language. In defunctionalized programs, all remaining functions
are �rst-order top-level functions.

For instance, consider the program on sequences in Fig. D.1.

successors :: [Z] → [Z]
successors xs = map (λx → x + 1) xs
nestedLoop :: [σ ] → [τ ] → [(σ ,τ )]
nestedLoop xs ys = concatMap (λx → map (λy → (x, y)) ys) xs
map :: (σ → τ ) → [σ ] → [τ ]
map f [ ] = [ ]
map f (x : xs) = f x : map f xs
concatMap :: (σ → [τ ]) → [σ ] → [τ ]
concatMap f xs = concat (map f xs)

Figure D.1: A small example program for defunctionalization.

In this program, the �rst-class function values arise from evaluating the three terms λy → (x, y),
that we call pair , λx → map (λy → (x, y)) ys, that we call mapPair , and λx → x + 1, that we call
addOne. Defunctionalization creates a type Fun σ τ with a constructor for each of the three terms,
respectively Pair , MapPair and AddOne. Both pair and mapPair close over some free variables, so
their corresponding constructors will take an argument for each free variable; for pair we have

x :: σ ` λy → (x, y) :: τ → (σ ,τ ),

while for mapPair we have

ys :: [τ ] ` λx → map (λy → (x, y)) ys :: σ → [(σ ,τ )].
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Hence, the type of defunctionalized functions Fun σ τ and its interpreter applyFun become:

data Fun σ τ where
AddOne :: Fun Z Z
Pair :: σ → Fun τ (σ ,τ )
MapPair :: [τ ] → Fun σ [(σ ,τ )]

applyFun :: Fun σ τ → σ → τ
applyFun AddOne x = x + 1
applyFun (Pair x) y = (x, y)
applyFun (MapPair ys) x = mapDF (Pair x) ys

We need to also transform the rest of the program accordingly.

successors :: [Z] → [Z]
successors xs = map (λx → x + 1) xs
nestedLoopDF :: [σ ] → [τ ] → [(σ ,τ )]
nestedLoopDF xs ys = concatMapDF (MapPair ys) xs
mapDF :: Fun σ τ → [σ ] → [τ ]
mapDF f [ ] = [ ]
mapDF f (x : xs) = applyFun f x : mapDF f xs
concatMapDF :: Fun σ [τ ] → [σ ] → [τ ]
concatMapDF f xs = concat (mapDF f xs)

Figure D.2: Defunctionalized program.

Some readers might notice this program still uses �rst-class function, because it encodes multi-
argument functions through currying. To get a fully �rst-order program, we encode multi-arguments
functions using tuples instead of currying.1 Using tuples our example becomes:

applyFun :: (Fun σ τ ,σ ) → τ
applyFun (AddOne, x) = x + 1
applyFun (Pair x, y) = (x, y)
applyFun (MapPair ys, x) = mapDF (Pair x, ys)
mapDF :: (Fun σ τ , [σ ]) → [τ ]
mapDF (f , [ ]) = [ ]
mapDF (f , x : xs) = applyFun (f , x) : mapDF (f , xs)
concatMapDF :: (Fun σ [τ ], [σ ]) → [τ ]
concatMapDF (f , xs) = concat (mapDF (f , xs))
nestedLoopDF :: ([σ ], [τ ]) → [(σ ,τ )]
nestedLoopDF (xs, ys) = concatMapDF (MapPair ys, xs)

However, we’ll often write such defunctionalized programs using Haskell’s typical curried
syntax, as in Fig. D.2. Such programs must not contain partial applications.

1Strictly speaking, the resulting program is still not �rst-order, because in Haskell multi-argument data constructors,
such as the pair constructor (,) that we use, are still �rst-class curried functions, unlike for instance in OCaml. To make this
program truly �rst-order, we must formalize tuple constructors as a term constructor, or formalize these function de�nitions
as multi-argument functions. At this point, this discussion is merely a technicality that does not a�ect our goals, but it
becomes relevant if we formalize the resulting �rst-order language as in Sec. 17.3.



Chapter D. Defunctionalizing function changes 219

In general, defunctionalization creates a constructor C of type Fun σ τ for each �rst-class
function expression Γ ` t : σ → τ in the source program.2 While lambda expression l closes
implicitly over environment ρ : n Γ o, C closes over it explicitly: the values bound to free variables
in environment ρ are passed as arguments to constructor C. As a standard optimization, we only
includes variables that actually occur free in l, not all those that are bound in the context where l
occurs.

D.2.1 Defunctionalization with separate function codes
Next, we show a slight variant of defunctionalization, that we use to achieve our goals with less
code duplication, even at the expense of some e�ciency; we call this variant defunctionalization
with separate function codes.

We �rst encode contexts as types and environments as values. Empty environments are encoded
as empty tuples. Environments for a context such as x :: τ1, y :: τ2, . . . are encoded as values of type
τ1 × τ2 × . . .

In this defunctionalization variant, instead of de�ning directly a GADT of defunctionalized
functions Fun σ τ , we de�ne a GADT of function codes Code env σ τ , whose values contain no
environment. Type Code is indexed not just by σ and τ but also by the type of environments, and
has a constructor for each �rst-class function expression in the source program, like Fun σ τ does
in conventional defunctionalization. We then de�ne Fun σ τ as a pair of a function code of type
Code env σ τ and an environment of type env.

As a downside, separating function codes adds a few indirections to the memory representation
of closures: for instance we use (AddOne, ()) instead of AddOne, and (Pair, 1) instead of Pair 1.

As an upside, with separate function codes we can de�ne many operations generically across all
function codes (see Appendix D.2.2), instead of generating de�nitions matching on each function.
What’s more, we later de�ne operations that use raw function codes and need no environment;
we could alternatively de�ne function codes without using them in the representation of function
values, at the expense of even more code duplication. Code duplication is especially relevant because
we currently perform defunctionalization by hand, though we are con�dent it would be conceptually
straightforward to automate the process.

Defunctionalizing the program with separate function codes produces the following GADT of
function codes:

type Env env = (CompChangeStruct env,NilTestable env)
data Code env σ τ where

AddOne :: Code () Z Z
Pair :: Code σ τ (σ ,τ )
MapPair :: Env σ ⇒ Code [τ ] σ [(σ ,τ )]

In this de�nition, type Env names a set of typeclass constraints on the type of the environment,
using the ConstraintKinds GHC language extension. Satisfying these constraints is necessary to
implement a few operations on functions. We also require an interpretation function applyCode for
function codes. If c is the code for a function f = λx → t, calling applyCode c computes f ’s output
from an environment env for f and an argument for x.

applyCode :: Code env σ τ → env → σ → τ
applyCode AddOne () x = x + 1

2We only need codes for functions that are used as �rst-class arguments, not for other functions, though codes for the
latter can be added as well.
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applyCode Pair x y = (x, y)
applyCode MapPair ys x = mapDF (F (Pair, x)) ys

The implementation of applyCode MapPair only works because of the Env σ constraint for con-
structor MapPair : this constraint is required when constructing the defunctionalized function value
that we pass as argument to mapDF .

We represent defunctionalized function values through type RawFun env σ τ , a type synonym
of the product of Code env σ τ and env. We encode type σ → τ through type Fun σ τ , de�ned as
RawFun env σ τ where env is existentially bound. We add constraint Env env to the de�nition of
Fun σ τ , because implementing ⊕ on function changes will require using ⊕ on environments.

type RawFun env σ τ = (Code env σ τ , env)
data Fun σ τ where
F :: Env env ⇒ RawFun env σ τ → Fun σ τ

To interpret defunctionalized function values, we wrap applyCode in a new version of applyFun,
having the same interface as the earlier applyFun.

applyFun :: Fun σ τ → σ → τ
applyFun (F (code, env)) arg = applyCode code env arg

The rest of the source program is defunctionalized like before, using the new de�nition of Fun σ τ
and of applyFun.

D.2.2 Defunctionalizing function changes
Defunctionalization encodes function values as pairs of function codes and environments. In ILC, a
function value can change because the environment changes or because the whole closure is replaced
by a di�erent one, with a di�erent function code and di�erent environment. For now, we focus on
environment changes for simplicity. To allow inspecting function changes, we defunctionalize them
as well, but treat them specially.

Assume we want to defunctionalize a function change df with type ∆(σ → τ ) = σ → ∆σ → ∆τ ,
valid for function f : σ → τ . Instead of transforming type ∆(σ → τ ) into Fun σ (Fun ∆σ ∆τ ), we
transform ∆(σ → τ ) into a new type DFun σ τ , the change type of Fun σ τ (∆(Fun σ τ ) = DFun σ τ ).
To apply DFun σ τ we introduce an interpreter dapplyFun :: Fun σ τ → ∆(Fun σ τ ) → ∆(σ → τ ),
or equivalently dapplyFun :: Fun σ τ → DFun σ τ → σ → ∆σ → ∆τ , which also serves as
derivative of applyFun.

Like we did for Fun σ τ , we de�ne DFun σ τ using function codes. That is, DFun σ τ pairs a
function code Code env σ τ together with an environment change and a change structure for the
environment type.

data DFun σ τ = ∀env.ChangeStruct env ⇒ DF (∆env,Code env σ τ )

Without separate function codes, the de�nition of DFun would have to include one case for each
�rst-class function.

Environment changes

Instead of de�ning change structures for environments, we encode environments using tuples and
de�ne change structures for tuples.

We de�ne �rst change structures for empty tuples and pairs: Sec. 12.3.3
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instance ChangeStruct () where
type ∆() = ()
_ ⊕ _ = ()
oreplace _ = ()

instance (ChangeStruct a,ChangeStruct b) ⇒ ChangeStruct (a, b) where
type ∆(a, b) = (∆a,∆b)
(a, b) ⊕ (da, db) = (a ⊕ da, b ⊕ db)
oreplace (a2, b2) = (oreplace a2, oreplace b2)

To de�ne change structures for n-uples of other arities we have two choices, which we show on
triples (a, b, c) and can be easily generalized.

We can encode triples as nested pairs (a, (b, (c, ()))). Or we can de�ne change structures for
triples directly:

instance (ChangeStruct a,ChangeStruct b,
ChangeStruct c) ⇒ ChangeStruct (a, b, c) where

type ∆(a, b, c) = (∆a,∆b,∆c)
(a, b, c) ⊕ (da, db, dc) = (a ⊕ da, b ⊕ db, c ⊕ dc)
oreplace (a2, b2, c2) = (oreplace a2, oreplace b2, oreplace c2)

Generalizing from pairs and triples, one can de�ne similar instances for n-uples in general (say,
for values of n up to some high threshold).

Validity and ⊕ on defunctionalized function changes

A function change df is valid for f if df has the same function code as f and if df ’s environment
change is valid for f ’s environment:

DF dρ c B F ρ1 c ↪→ F ρ2 c : Fun σ τ = dρ B ρ1 ↪→ ρ2 : env

where c is a function code of type Code env σ τ , and where c’s type binds the type variable env we
use on the right-hand side.

Next, we implement ⊕ on function changes to match our de�nition of validity, as required. We
only need f ⊕ df to give a result if df is a valid change for f . Hence, if the function code embedded
in df does not match the one in f , we give an error.3 However, our �rst attempt does not typecheck,
since the typechecker does not know whether the environment and the environment change have
compatible types.

instance ChangeStruct (Fun σ τ ) where
type ∆(Fun σ τ ) = DFun σ τ
F (env, c1) ⊕ DF (denv, c2) =

if c1 ≡ c2 then
F (env ⊕ denv) c1

else
error "Invalid function change in oplus"

In particular, env ⊕ denv is reported as ill-typed, because we don’t know that env and denv
have compatible types. Take c1 = Pair, c2 = MapPair, f = F (env, Pair) :: σ → τ and df =

3We originally speci�ed ⊕ as a total function to avoid formalizing partial functions, but as mentioned in Sec. 10.3, we do
not rely on the behavior of ⊕ on invalid changes.
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DF (denv,MapPair) :: ∆(σ → τ ). Assume we evaluate f ⊕ df = F (env, Pair) ⊕ DF (denv,MapPair):
there, indeed, env :: σ and denv :: [τ ], so env ⊕ denv is not type-correct. Yet, evaluating f ⊕ df
would not fail, because MapPair and Pair are di�erent, c1 ≡ c2 will return false and env ⊕ denv
won’t be evaluated. But the typechecker does not know that.

Hence, we need an equality operation that produces a witness of type equality. We de�ne the
needed infrastructure with few lines of code. First, we need a GADT of witnesses of type equality;
we can borrow from GHC’s standard library its de�nition, which is just:

-- From Data.Type.Equality
data τ1 :∼: τ2 where

Re� :: τ :∼: τ

If x has type τ1 :∼: τ2 and matches pattern Re�, then by standard GADT typing rules τ1 and τ2 are
equal. Even if τ1 :∼: τ2 has only constructor Re�, a match is necessary since x might be bottom.
Readers familiar with type theory, Agda or Coq will recognize that :∼: resembles Agda’s propositional
equality or Martin-Löf’s identity types, even though it can only represents equality between types
and not between values.

Next, we implement function codeMatch to compare codes. For equal codes, this operation
produces a witness that their environment types match.4 Using this operation, we can complete the
above instance of ChangeStruct (Fun σ τ ).

codeMatch :: Code env1 σ τ → Code env2 σ τ → Maybe (env1 :∼: env2)
codeMatch AddOne AddOne = Just Re�
codeMatch Pair Pair = Just Re�
codeMatch MapPair MapPair = Just Re�
codeMatch _ _ = Nothing
instance ChangeStruct (Fun σ τ ) where

type ∆(Fun σ τ ) = DFun σ τ
F (c1, env) ⊕ DF (c2, denv) =
case codeMatch c1 c2 of
Just Re� → F (c1, env ⊕ denv)
Nothing → error "Invalid function change in oplus"

Applying function changes

After de�ning environment changes, we de�ne an incremental interpretation function dapplyCode.
If c is the code for a function f = λx → t, as discussed, calling applyCode c computes the output of
f from an environment env for f and an argument for x. Similarly, calling dapplyCode c computes
the output of D n f o from an environment env for f , an environment change denv valid for env, an
argument for x and an argument change dx.

In our example, we have

dapplyCode :: Code env σ τ → env → ∆env → σ → ∆σ → ∆τ
dapplyCode AddOne () () x dx = dx
dapplyCode Pair x dx y dy = (dx, dy)
dapplyCode MapPair ys dys x dx =
dmapDF (F (Pair, x)) (DF (Pair, dx)) ys dys

4If a code is polymorphic in the environment type, it must take as argument a representation of its type argument, to be
used to implement codeMatch. We represent type arguments at runtime via instances of Typeable, and omit standard details
here.
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On top of dapplyCode we can de�ne dapplyFun, which functions as a a derivative for applyFun
and allows applying function changes:

dapplyFun :: Fun σ τ → DFun σ τ → σ → ∆σ → ∆τ
dapplyFun (F (c1, env)) (DF (c2, denv)) x dx =

case codeMatch c1 c2 of
Just Re� → dapplyCode c1 env denv x dx
Nothing → error "Invalid function change in dapplyFun"

However, we can also implement further accessors that inspect function changes. We can now
�nally detect if a change is nil. To this end, we �rst de�ne a typeclass that allows testing changes to
determine if they’re nil:

class NilChangeStruct t ⇒ NilTestable t where
isNil :: ∆t → Bool

Now, a function change is nil only if the contained environment is nil.

instance NilTestable (Fun σ τ ) where
isNil :: DFun σ τ → Bool
isNil (DF (denv, code)) = isNil denv

However, this de�nition of isNil only works given a typeclass instance for NilTestable env; we need
to add this requirement as a constraint, but we cannot add it to isNil’s type signature since type
variable env is not in scope there. Instead, we must add the constraint where we introduce it by
existential quanti�cation, just like the constraint ChangeStruct env. In particular, we can reuse the
constraint Env env.

data DFun σ τ =
∀env. Env env ⇒
DF (Code env σ τ ,∆env)

instance NilChangeStruct (Fun σ τ ) where
0F (code,env) = DF (code, 0env)

instance NilTestable (Fun σ τ ) where
isNil :: DFun σ τ → Bool
isNil (DF (code, denv)) = isNil denv

We can then wrap a derivative via function wrapDF to return a nil change immediately if at
runtime all input changes turn out to be nil. This was not possible in the setting described by Cai
et al. [2014], because nil function changes could not be detected at runtime, only at compile time.
To do so, we must produce directly a nil change for v = applyFun f x. To avoid computing v, we
assume we can compute a nil change for v without access to v via operation onil and typeclass
OnilChangeStruct (omitted here); argument Proxy is a constant required for purely technical reasons.

wrapDF :: OnilChangeStruct τ ⇒ Fun σ τ → DFun σ τ → σ → ∆σ → ∆τ
wrapDF f df x dx =
if isNil df then
onil Proxy -- Change-equivalent to 0applyFun f x

else
dapplyFun f df x dx
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D.3 Defunctionalization and cache-transfer-style
We can combine the above ideas with cache-transfer-style (Chapter 17). We show the details quickly.

Combining the above with caching, we can use defunctionalization as described to implement the
following interface for functions in caches. For extra generality, we use extension ConstraintKinds
to allow instances to de�ne the required typeclass constraints.

class FunOps k where
type Dk k = (dk :: ∗ → ∗ → ∗ → ∗ → ∗) | dk → k
type ApplyCtx k i o :: Constraint
apply :: ApplyCtx k i o⇒ k i o cache→ i→ (o, cache)
type DApplyCtx k i o :: Constraint
dApply :: DApplyCtx k i o⇒
Dk k i o cache1 cache2 → ∆i→ cache1 → (∆o, cache2)

type DerivCtx k i o :: Constraint
deriv :: DerivCtx k i o⇒
k i o cache→ Dk k i o cache cache

type FunUpdCtx k i o :: Constraint
funUpdate :: FunUpdCtx k i o⇒
k i o cache1 → Dk k i o cache1 cache2 → k i o cache2

isNilFun :: Dk k i o cache1 cache2 → Maybe (cache1 :∼: cache2)
updatedDeriv ::
(FunOps k, FunUpdCtx k i o,DerivCtx k i o) ⇒
k i o cache1 → Dk k i o cache1 cache2 → Dk k i o cache2 cache2

updatedDeriv f df = deriv (f ‘funUpdate‘ df )

Type constructor k de�nes the speci�c constructor for the function type. In this interface, the type
of function changes DK k i o cache1 cache2 represents functions (encoded by type constructor Dk k)
with inputs of type i, outputs of type o, input cache type cache1 and output cache type cache2. Types
cache1 and cache2 coincide for typical function changes, but can be di�erent for replacement function
changes, or more generally for function changes across functions with di�erent implementations
and cache types. Correspondingly, dApply supports applying such changes across closures with
di�erent implementations: unfortunately, unless the two implementations are similar, the cache
content cannot be reused.

To implement this interface it is su�cient to de�ne a type of codes that admits an instance of type-
class Codelike. Earlier de�nitions of codeMatch, applyFun and dapplyFun, adapted to cache-transfer
style.

class Codelike code where
codeMatch :: code env1 a1 r1 cache1 → code env2 a2 r2 cache2 →
Maybe ((env1, cache1) :∼: (env2, cache2))

applyCode :: code env a b cache→ env → a→ (b, cache)
dapplyCode :: code env a b cache→ ∆env → ∆a→ cache→ (∆b, cache)

Typically, a defunctionalized program uses no �rst-class functions and has a single type of functions.
Having a type class of function codes weakens that property. We can still use a single type of codes
throughout our program; we can also use di�erent types of codes for di�erent parts of a program,
without allowing for communications between those parts.

On top of the Codelike interface, we can de�ne instances of interface FunOps and ChangeStruct.
To demonstrate this, we show a complete implementation in Figs. D.3 and D.4. Similarly to ⊕, we
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can implement } by comparing codes contained in function changes; this is not straightforward
when using closure conversion as in Sec. 17.4.2, unless we store even more type representations.

We can detect nil changes at runtime even in cache-passing style. We can for instance de�ne
function wrapDer1 which does something trickier than wrapDF : here we assume that dg is a
derivative taking function change df as argument. Then, if df is nil, dg df must also be nil, so we
can return a nil change directly, together with the input cache. The input cache has the required
type because in this case, the type cache2 of the desired output cache has matches type cache1 of the
input cache (because we have a nil change df across them): the return value of isNilFun witnesses
this type equality.

wrapDer1 ::
(FunOps k,OnilChangeStruct r ′) ⇒
(Dk k i o cache1 cache2 → f cache1 → (∆r ′, f cache2)) →
(Dk k i o cache1 cache2 → f cache1 → (∆r ′, f cache2))

wrapDer1 dg df c =
case isNilFun df of
Just Re� → (onil Proxy, c)
Nothing → dg df c

We can also hide the di�erence between di�erence cache types by de�ning a uniform type of
caches, Cache code. To hide caches, we can use a pair of a cache (of type cache) and a code for that
cache type. When applying a function (change) to a cache, or when composing the function, we can
compare the function code with the cache code.

In this code we have not shown support for replacement values for functions; we leave details
to our implementation.
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type RawFun a b code env cache = (code env a b cache, env)
type RawDFun a b code env cache = (code env a b cache,∆env)
data Fun a b code = ∀env cache. Env env ⇒

F (RawFun a b code env cache)
data DFun a b code = ∀env cache. Env env ⇒

DF (RawDFun a b code env cache)
-- This cache is not indexed by a and b

data Cache code = ∀a b env cache.C (code env a b cache) cache
-- Wrapper

data FunW code a b cache where
W :: Fun a b code→ FunW code a b (Cache code)

data DFunW code a b cache1 cache2 where
DW :: DFun a b code→ DFunW code a b (Cache code) (Cache code)

derivFun :: Fun a b code→ DFun a b code
derivFun (F (code, env)) = DF (code, 0env)
oplusBase :: Codelike code⇒ Fun a b code→ DFun a b code→ Fun a b code
oplusBase (F (c1, env)) (DF (c2, denv)) =

case codeMatch c1 c2 of
Just Re� →
F (c1, env ⊕ denv)

_→ error "INVALID call to oplusBase!"

ocomposeBase :: Codelike code⇒ DFun a b code→ DFun a b code→ DFun a b code
ocomposeBase (DF (c1, denv1)) (DF (c2, denv2)) =
case codeMatch c1 c2 of
Just Re� →
DF (c1, denv1 } denv2)

_→ error "INVALID call to ocomposeBase!"

instance Codelike code⇒ ChangeStruct (Fun a b code) where
type ∆(Fun a b code) = DFun a b code
(⊕) = oplusBase

instance Codelike code⇒ NilChangeStruct (Fun a b code) where
0F (c,env) = DF (c, 0env)

instance Codelike code⇒ CompChangeStruct (Fun a b code) where
df 1 } df 2 = ocomposeBase df 1 df 2

instance Codelike code⇒ NilTestable (Fun a b code) where
isNil (DF (c, env)) = isNil env

Figure D.3: Implementing change structures using Codelike instances.
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applyRaw :: Codelike code⇒ RawFun a b code env cache→ a→ (b, cache)
applyRaw (code, env) = applyCode code env
dapplyRaw :: Codelike code⇒ RawDFun a b code env cache→ ∆a→ cache→ (∆b, cache)
dapplyRaw (code, denv) = dapplyCode code denv
applyFun :: Codelike code⇒ Fun a b code→ a→ (b,Cache code)
applyFun (F f @ (code, env)) arg =
(id ∗∗∗ C code) $ applyRaw f arg

dapplyFun :: Codelike code⇒ DFun a b code→ ∆a→ Cache code→ (∆b,Cache code)
dapplyFun (DF (code1, denv)) darg (C code2 cache1) =
case codeMatch code1 code2 of
Just Re� →
(id ∗∗∗ C code1) $ dapplyCode code1 denv darg cache1

_→ error "INVALID call to dapplyFun!"

instance Codelike code⇒ FunOps (FunW code) where
type Dk (FunW code) = DFunW code
apply (W f ) = applyFun f
dApply (DW df ) = dapplyFun df
deriv (W f ) = DW (derivFun f )
funUpdate (W f ) (DW df ) = W (f ⊕ df )
isNilFun (DW df ) =
if isNil df then
Just Re�

else
Nothing

Figure D.4: Implementing FunOps using Codelike instances.
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