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Abstract

If the result of an expensive computation is invalidated by a small
change to the input, the old result should be updated incrementally
instead of reexecuting the whole computation. We incrementalize
programs through their derivative. A derivative maps changes in
the program’s input directly to changes in the program’s output,
without reexecuting the original program. We present a program
transformation taking programs to their derivatives, which is fully
static and automatic, supports first-class functions, and produces
derivatives amenable to standard optimization.

We prove the program transformation correct in Agda for a
family of simply-typed A-calculi, parameterized by base types
and primitives. A precise interface specifies what is required to
incrementalize the chosen primitives.

We investigate performance by a case study: We implement in
Scala the program transformation, a plugin and improve perfor-
mance of a nontrivial program by orders of magnitude.

Keywords Incremental computation, first-class functions, perfor-
mance, Agda, formalization

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; D.3.3 [Program-
ming Languages]: Language Constructs and Features; D.3.4 [Pro-
gramming Languages]: Processors—Optimization

1. Introduction

Incremental computation has a long-standing history in computer
science [21]. Often, a program needs to update its output efficiently
to reflect input changes [23]]. Instead of rerunning such a program
from scratch on its updated input, incremental computation research
looks for alternatives that are cheaper in a common scenario: namely,
when the input change is much smaller than the input itself.

For instance, consider the grand_total program, which calcu-
lates the sum of all numbers in collections zs, ys.

grand_total = Azs. Ays. fold (4+) 0 (merge xs ys)
output = grand_total {{1,1}} {{2,3,4}} =11

With {{...}} we represent a multiset or bag, that is an un-
ordered collection (like a set) where elements are allowed to
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appear more than once (unlike a set). Now assume that the in-
put zs changes from {{1,1}} to {{1}}, and ys changes from
{{2,3,4}} to {{2,3,4,5}}. Instead of recomputing output
from scratch, we could also compute it incrementally. If we
have a representation for the changes to the inputs (say, dzs =
{{remove 1}}, dys = {{add 5}}), we can compute the new
result through a function grand_total’ that takes the old inputs
zs = {{1,1}}, ys = {{2,3,4}} and the changes dzs, dys to pro-
duce the output change. In this case, it would compute the change
grand_total’ xs dxs ys dys = plus 4, which can then be used to
update the original output 11 to yield the updated result 15. We call
grand_total’ the derivative of grand_total. It is a function in the
same language as grand_total, accepting and producing changes,
which are simple first-class values of this language. If we increase
the size of the original inputs zs and ys, the time complexity of
grand_total xs ys increases linearly, while the time complexity of
grand_total’ zs dzs ys dys only depends on the size of dzs and
dys, which is smaller both in our example and in general.

To support automatic incrementalization, in this paper we intro-
duce the ILC (incrementalizing A-calculi) framework. We define
an automatic program transformation Derive that differentiates pro-
grams, that is, computes their derivatives; Derive guarantees that

f (a®da) = (f a) @ (Derive(f) a da) . (1)

where 22 is denotational equality, da is a change on a and a & da
denotes a updated with change da, that is, the updated input of f.
Hence, we can optimize programs by replacing the left-hand side,
which recomputes the output from scratch, with the right-hand side,
which computes the output incrementally using derivatives.

ILC is based on a simply-typed A-calculus parameterized by
plugins. A plugin defines (a) base types and primitive operations, and
(b) a change representation for each base type, and an incremental
version for each primitive. In other words, the plugin specifies the
primitives and their respective derivatives, and ILC can glue together
these simple derivatives in such a way that derivatives for arbitrary
simply-typed A-calculus expressions using these primitives can be
computed. Both our implementation and our correctness proof is
parametric in the plugins, hence it is easy to support (and prove
correct) new plugins.

This paper makes the following contributions:

e We present a novel mathematical theory of changes and deriva-
tives, which is more general than other work in the field because
changes are first-class entities, they are distinct from base values
and they are defined also for functions (Sec. [2).

We present the first approach to incremental computation for
pure A-calculi by a source-to-source transformation, Derive, that
requires no run-time support. The transformation produces an
incremental program in the same language; all optimization
techniques for the original program are applicable to the incre-
mental program as well. We prove that our incrementalizing
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transformation Derive is correct (Eq. (I)) by a machine-checked
formalization in Agda [6]. The proof gives insight into the defi-
nition of Derive: we first construct the derivative [ — ] of the
denotational semantics of a simply-typed A-calculus term, that
is, its change semantics. Then, we show that Derive is produced
by erasing [ — ] to a simply-typed program (Sec. .

While we focus mainly on the theory of changes and derivatives,
we also perform a performance case study. We implement the
derivation transformation in Scala, with a plug-in architecture
that can be extended with new base types and primitives. We
define a plugin with support for different collection types and
use the plugin to incrementalize a variant of the MapReduce pro-
gramming model [16]. Benchmarks show that on this program,
incrementalization can reduce asymptotic complexity and can
turn O(n) performance into O(1), improving running time by
over 4 orders of magnitude on realistic inputs (Sec. ).

Our Agda formalization, Scala implementation and benchmark
results are available at the URL http://inc-1lc.github.io/|
All lemmas and theorems presented in this paper have been proven
in Agda. In the paper, we present an overview of the formalization
in more human-readable form, glossing over some technical details.

2. A theory of changes

This section introduces a formal concept of changes; this concept
was already used informally in Eq. (I)) and is central to our approach.
We first define change structures formally, then construct change
structures for functions between change structures, and conclude
with a theorem that relates function changes to derivatives.

2.1 Change structures

Consider a set of values, for instance the set of natural numbers N.
A change dv for v € N should describe the difference between v
and another natural v,ew € N. We do not define changes directly,
but we specify operations which must be defined on them. They are:

e We can update a base value v with a change dv to obtain an
updated or new value vnew. We write vnew = v B dv.

e We can compute a change between two arbitrary values voq and
Unew Of the set we are considering. We write dv = Unew © Vold-

For naturals, it is usual to describe changes using standard
subtraction and addition. That is, for naturals we can define v® dv =
v + dv and Vnew © Vold = Unew — Vold- TO ensure that @ and © are
always defined, we need to define the set of changes carefully. N is
too small, because subtraction does not always produce a natural;
the set of integers Z is instead too big, since adding a natural and
an integer does not always produce a natural. In fact, we cannot
use the same set of all changes for all naturals. Hence we must
adjust the requirements: for each base value v we introduce a set
Awv of changes for v, and require vnew © void to produce values in
Avoia, and v @ dv to be defined for dv in Awv. For natural v, we set
Av = {dv | v+ dv > 0}; © and @ are then always defined.

The following definition sums up the discussion so far:

Definition 2.1 (Change structures). A tuple V= (V,A,®,0)isa
change structure (for V') if:

(a) V is a set, called the base set.

(b) Givenv € V, Aw is a set, called the change set.

(¢) Givenv e Vand dv € Av,v @ dv e V.

(d) Givenu,v € V,u S v € Av.

(e) Given u,v € V, v ® (u © v) equals u. O

One might expect a further assumption that (v & dv) © v = dv.
While it does hold for the change structure of N, it is not needed

in general. This means that multiple changes can represent the
difference between the same two base values. Throughout our theory,
we only discuss equality of base values, not of changes.

Notation We overload operators A, © and @ to refer to the
corresponding operations of different change structures; we will
subscript these symbols when needed to prevent ambiguity. For
any S, we write S for its first component, as above. We make &
left-associative, that is, v @ dvy @ dv, means (v @ dv1) ® dva. We
assign precedence to function application over & and &, that is,
fa®gadameans (f a)®(ga da).

Examples We demonstrate a change structure on bags with signed
multiplicities [15]. These are unordered collections where each
element can appear an integer number of times.

(a) Let S be any set. The base set V' = Bag S is the set of bags
of elements of S with signed multiplicities. The bag {{1,1,2}}
contains two positive occurrences of 1 and a negative occurrence
of 2.

(b) For each bag v € V/, set the change set Av = V. Every bag can
be a change to any other bag. The bag {{1,1,5}} represents
two insertions of 1 and one deletion of 5.

(c) The update operator is bag merge: & = merge. The merge of
two bags is the element-wise sum of multiplicities:

merge {{1,2}} {{1,1,5}} ={{1,2,5}}.
(d) Let negate be the negation of multiplicities:
negate {{1,1,5}} = {{1,1,5}}.

To compute the difference of two bags, compute the merge with
a negated bag:

u© v = merge u (negate v).

(e) Given the above definition of @ and &, it is not hard to show
that v @ (u © v) for all bags u,v € V.

The change structure we just described is written succinctly

]ig\S = (Bag S, (\v. Bag 9),
merge, (A\x y. merge z (negate y))).

This change structure is an instance of a general construction:
we can build a change structure from an arbitrary abelian group.
An abelian group is a tuple (G, H, B, ¢), where H is a commutative
and associative binary operation, e is its identity element, and 5
produces inverses of elements g of G, such that (Hg) H g =
g B (Hg) = e. For instance, integers, unlike naturals, form the
abelian group (Z, +, —,0) (where — represents the unary minus).
Each abelian group (G, H, B, e) induces a change structure, namely
(G, \g. G,H, \g h. g B (Bh)), where the change set for any g €
G is the whole G. Change structures are more general, though, as
the example with natural numbers illustrates. If () represents the
empty bag, then (Bag S, merge, negate, ) is an abelian group,
which induces the change structure we have just seen.

The abelian group on integers induces also a change structure on
integers, namely Z = (Z, (Av. Z) , +, —). O

Nil changes and derivatives A particularly important change is
the nil change of a value:

Definition 2.2 (Nil change). Given a change structure V and a
value v € V, the change v © v is the nil change for v.

0, =v6v O

The nil change for a value does indeed not change it.
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Lemma 2.3 (Behavior of 0). Given a change structure V and a
valuev e V,v @ 0, = v. O

After defining change structures, we can restate the definition of
derivatives from Eq. (T).

Definition 2.4 (Derivatives). Given change structures A and B
and a function f € A — B on the change sets of these change
structures, we call a binary function f' the derivative of f if for all
values a € A and corresponding changes da € A aa,

fla®da)=fadf ada. O

Applying a derivative to a value and its nil change gives a nil
change.

Iiemma }'5 (Behavior of derivatives on 0). Given change structures
A and B, a function f € A — B, an element a of A, and the
derivative f’ of f, we have f’ a 0q = Oy o). O

Examples let f : Bag S — Bag S be the constant function
mapping everything to the empty bag. Its derivative f' : Bag S —
Bag S — Bag S has to ignore its two arguments and produce the
empty bag in all cases.

Let id : Bag S — Bag S be the identity function between
bags. Its derivative id’ is defined by id’ v dv = dv. O

2.2 Function changes

Allowing values to change is useful, but we need to enable also
functions to change. To understand why, think about the curried
function grand_total: it takes zs to a function value (closure)
knowing the value of zs. Its derivative grand_total’ should satisfy

grand_total (zs & dzs) =
grand_total xs @& gmnd_total/ s dzs.

That is, grand_total’ must take zs and its change to a change of a
closure; updating the closure with this change must give the same
result as grand_total (zs & dxs), that is a closure knowing the
value of zs & dxs. Similarly, since lambda-calculus functions can
also take other functions as arguments, derivatives can take function
changes as arguments.

In this section, we will demonstrate how we can construct change
structures for functions f € A — B, assuming change structures
for A and B.

Definitions  As seen, the derivative of f computes the change of
f a when a becomes a & da. However, also f can change: As we’ll
see in Sec.[3.2] to incrementalize a function application f a we need
to compute the difference (f @ df) (a @ da) © f a without rerun-
ning (f @ df) (a ® da). We compute this difference using func-
tion changes, and define change structures on functions precisely to
make this possible. A function change df must be a function such
that f a ® df a da = (f @ df) (a® da) (Theorem [2.9)! Since
however f @ df can’t be defined yet, we impose a requirement
(Property 2.6b) that we’ll later show equivalent to Theorem [2.9]

Definition 2.6. Given change structures Aand B and feA— B,
the set A 4_, g f contains all binary functions df such that

(@) df a da € A (f a) and
(b) fa®df ada=f (a®da)®df (a® da) Oagda)

for all values a € A and corresponding changes da € A sa. O

Examples Suppose f € Bag S — Bag S and consider a mem-
ber df of the change set A 4, g f. Condition (a) says that df should
map a bag and a bag change to another bag change. Condition (b)
requires df to mimic the incremental behavior of f. Taken together,
they codify what we consider appropriate incremental adjustments

to f.

In particular, different functions of the same type can have
different sets of changes. Consider two functions of type Bag S —
Bag S.

idr=u1x

fxz=0

The set Apag s—Bag s contains “changes” to f, namely all binary
bag functions df satisfying (b): df a da = df (a @ da) O(ag4a) =
df (merge a da) (). Such binary functions include merge and all
constant functions.

The set Apag s—Bag s%d contains changes to id, namely all
binary bag functions did satisfying (b): id a @ did a da =
id (a®da) ® did (a®da) O(egda), Which simplifies to
merge a (did a da) = merge (merge a da) (did (merge a da) ().
Neither merge nor any constant function is a change to id, but the
function did a da = merge da {{1,2}} is. O

The change-structure operations on functions can now be defined
similarly to a distributive law.

Definition 2.7 (Operations on function changes). Given change
structures A and B, the operations @4, g and © 4, p are defined
as follows.

(f ®aspdf)v =fwo @®p df v 0,
(f20uasB fi)vdov=fo (VBadv)OB f1 v O

All these definitions have been carefully set up to ensure that we
have in fact lifted change structures to function spaces.

Theorem 2.8. Given change structures A and B, the tuple (A —
B,AsB,Pa>B,Sa-B) is achange structure, which we denote
by A — B. O

After defining this change structure, we can talk about f & df.
So we can restate Property [2.6b]to show that a function change df
reacts to input changes da like the incremental version of f, that is,
df a da computes the change from f ato (f ® df) (a @ da):

Theorem 2.9 (Incrementalization). Given change structures A and
B, a function f € A — B and a value a € A with corresponding
changes df € Aa_.pf and da € A sa, we have that

(f® df) (a® da) = f a® df ada. O

For instance, incrementalizing

app=\f. \z. fx

with respect to the input changes df, dz amounts to calling df on
the original second argument x4 and on the change dz. In other
words, incrementalizing app gives Af. Adf. Az. Adz. df = dz.

Understanding function changes To understand function changes,
we can decompose them into two orthogonal concepts. With a func-
tion change df, we can compute at once df aoq da, the difference
between (f @ df) (a ® da) and f a, even though both the func-
tion and its argument change. But the effect of those two changes
can be described separately. We can account for changes to a
using f', the derivative of f: f (a® da) © f a = f' a da.
We can account for changes to f using the pointwise difference
of two functions, Vf = Xa. (f® df) a © f a; in particular,
(fodf) (a®da)o f (a®da) = V[ (a® da). Using then
the incrementalization theorem, we can show that a function change
simply combines a derivative with a pointwise change:

Soua aold @ df aou da
=fold Gold D [ Gotd da B V f Gnew

One can also compute a pointwise change from a function
change:

fa®df a0, =fa®dVfa
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(a) Syntax. (b) Typing.
Figure 1. Our base calculus.

ILC is based on function changes instead of pointwise changes Ak =% the type of changes

because a function change receives strictly more information than a
pointwise change, and is therefore more readily optimized.

2.3 Nil changes are derivatives

Theorem [2.9]tells us about the form an incremental program may
take. If df doesn’t change f at all, that is, if f & df = f, then
Theorem[2.9]becomes

f (a®da)=fa®df ada.

It says that df computes the change upon the output of f given a
change da upon the input a of f. In other words, the nil change to a
function is exactly its derivative (see Definition 2.4):

Theorem 2.10 (Nil changes are derivatives). Given change struc-
tures A and B and a function f € A — B, the change Oy is the
derivative f’ of f. O

In this section, we developed the theory of changes to define
formally what a derivative is (Definition[2.4) and to recognize that in
order to find the derivative of a function, we only have to find its nil
change (Theorem [2.10). Next, we want to provide a fully automatic
method for finding the nil change of a given function.

3. Incrementalizing \-calculi

In this section, we show how to incrementalize an arbitrary program
in simply-typed A-calculus. To this end, we define the source-to-
source transformation Derive. Using the denotational semantics [ — |
we define later (in Sec. [3.4), we can specify Derive’s intended
behavior: to ensure Eq. (1)), [ Derive(f) ] must be the derivative
of [ f] for any closed term f : A — B. We will overload the word
“derivative” and say simply that Derive( f) is the derivative of f.
It is easy to define derivatives of arbitrary functions as:

fede=f (x®dr)o fx.

We could implement Derive following the same strategy. However,
the resulting incremental programs would be no faster than recom-
putation. We cannot do better for arbitrary mathematical functions,
since they are infinite objects which we cannot fully inspect. There-
fore, we resort to a source-to-source transformation on simply-typed
A-calculus as defined in Fig. |1} In this section, we focus on the in-
crementalization of the features that are shared among all instances
of the plugin interface, that is, function types and the associated
syntactic forms, A-abstraction, application and variable references.

The sets of base types and primitive constants, as well as the typ-
ing rules for primitive constants, are on purpose left unspecified and
only defined by plugins — they are extensions points. Definitions
provided by the plugin are replaced, in figures, by ellipses (.. .”).
Defining different plugins allows to experiment with sets of base
types, associated primitives and incrementalization strategies. We
summarize requirements on plugins in Sec. Satisfying these
requirements is sufficient to ensure correct incrementalization. We
show an example plugin in our case study (Sec.[4.4).

D:7T>AT T
O:7T—T1T— AT

update a value with a change
the change between two values

Figure 2. Erased change structures on simple types.

A(c = 7)=0— Ac = AT
Oosr=Ag fxdz. (g (z®dx))o (f2)
Oonr = Afdf z. (f2) @ (df  (z © 1))

Figure 3. The erased change structures for function types.

3.1 Change types and erased change structures

We developed the theory of change structures in the previous section
to guide our implementation of Derive. By Theorem [2.T0} Derive
has only to find the nil change to the program itself, because nil
changes are derivatives. However, the theory of change structures
is not directly applicable to the simply-typed A-calculus, because
a precise implementation of change structures requires dependent
types. For instance, we cannot describe the set of changes A,v
precisely as a non-dependent type, because it depends on the value
we plan to update with these changes.

To work around this limitation of our object language, we use a
form of erasure of dependent types to simple types. In Fig. [2]and
Fig. we define change types AT as an approximate description
of change sets A,v (Fig. (D). In particular, all changes in A,v
correspond to values of terms with type A7, but not necessarily the
other way around. For instance, in the change structure for natural
numbers described in Sec. 2.1} we would have ANat = Int, even
though not every integer is a change for every natural number. For
primitive types ¢, A¢ and its associated @ and & operator must
be provided by the plugin developer. For function types, erased
change structures are given by Fig.|3| Erasing dependent types in
all components of a change structure, we obtain erased change
structures, which represent change structures as simply-typed A-
terms where ¢ and & are families of A-terms.

Erased change structures are not change structures themselves.
However, we will show how change structures and erased changes
structures have “almost the same” behavior (Sec.[3.6). We will hence
be able to apply our theory of changes.

3.2 Differentiation

When f is a closed term of function type, Derive(f) should be its
derivative, that is its nil change. Since Derive recurses on open terms,
we need a more general specification. We require thatif I' - ¢ : 7,
then Derive(t) represents the change in ¢ (of type A7) in terms of
changes to the values of its free variables. As a special case, when
t is a closed term, there is no free variable to change; hence, the
change to ¢ will be, as desired, the nil change of ¢.



The following typing rule shows the static semantics of Derive:

'Ht:7

D
I, AT & Derive(t) : AT FRIVE

We see that Derive(t) has access both to the free variables in ¢
(from T') and to their changes (from AT, defined in Fig. [A(d)). For
example, if a well-typed term ¢ contains « free, then I contains an
assumption z : 7 for some 7 and AT contains the corresponding
assumption dz : A7. Hence, Derive(t) can access the change of
by using dz. For simplicity, we assume that the original program
contains no variable names that start with d.The definition of Derive
will ensure that the dz variables are bound if the original term is
closed.

Let us analyzes each case of the definition of Derive(u) (Fig.[4(g):

o If u = x, Derive(x) must be the change of x, that is dz.

o If u = Az. t, Derive(t) is the change of u given the change in
its free variables. The change of w is then the change of ¢ as a
function of the base input x and its change dz, with respect to
changes in other open variables. Hence, we simply need to bind
dz by defining Derive(Ax. t) = A\x. Adz. Derive(t).

o If u = s t, Derive(s) is the change of s as a function of its
base input and change. Hence, we simply apply Derive(s) to the
actual base input ¢ and change Derive(t), giving Derive(s t) =
Derive(s) t Derive(t).

e If t = c: since c is a closed term, its change is a nil change,
hence (by Theorem|2.10) ¢’s derivative. We can obtain a correct
derivative for constants by setting:

Derive(c) =cOc=0,=c
This definition is inefficient for functional constants; hence

plugins must provide derivatives of the primitives they define.

This might seem deceptively simple. But A-calculus only imple-
ments binding of values, leaving “real work” to primitives; likewise,
differentiation for A-calculus only implement binding of changes,
leaving “real work” to derivatives of primitives. However, our sup-
port for A-calculus allows to glue the primitives together.

Examples Let us apply the transformation on the program
grand_total defined in Sec.

grand_total = Azs. Ays. fold (+) 0 (merge zs ys)
Derive(grand_total) =
Azs. Adxs. Ays. Adys.
fold" (+) (+) 00
(merge zs ys)
(merge’ xs dus ys dys)

The names fold’, merge’, +', 0’ stand for the derivatives of the cor-
responding primitives. The variables dzs and dys are systematically
named after s and ys to stand for their changes. As we shall see in

Sec.37]
merge’ = Au. Adu. M. Adv. merge du dv,
so the derivative of grand_total is B-equivalent to
Azs. Adzs. Ays. Adys.
fold' (+) (+) 00
(merge zs ys) (merge dxs dys).

This derivative is inefficient because it needlessly recomputes
merge xs ys. But we still need to inline the derivatives of fold
and other primitives to complete derivation. We’ll complete the
derivation process and see how to avoid this waste in Sec.f3] O

We have now informally derived the definition of Derive
(Fig. [A(g)) from its specification (Eq. (I)) and its typing. But for-
mally speaking, Derive is instead a definition. So in the rest of this
section, we’ll have to prove that Derive satisfies Eq. (I).

3.3 Architecture of the proof

Derive(t) is defined using change types. As discussed in Sec.
change types impose on their members less restrictions than cor-
responding change structures — they contain “junk” (such as the
change —5 for the natural number 3). We cannot constrain the be-
havior of Derive(t) on such junk; a direct correctness proof fails. To
avoid this problem, our proof defines a version of Derive which uses
change structures instead.

To this end, we first present a standard denotational semantics
[—1] for simply-typed A-calculus. Using our theory of changes,
we associate change structures to our domains. We define a non-
standard denotational semantics [[—]]A, which is analogous to
Derive but operates on elements of change structures, so that it
needn’t deal with junk. As a consequence, we can prove that [ £ ]~
is the derivative of [ ¢ ]: this is our key result.

Finally, we define a correspondence between change sets and
domains associated with change types, and show that whenever
[t]* has a certain behavior on an input, [ Derive(t)] has the
corresponding behavior on the corresponding input. Our correctness
property follows as a corollary.

3.4 Denotational semantics

In order to prove that incrementalization preserves the meaning of
terms, we define a denotational semantics of the object language.
We first associate a domain with every type, given the domains of
base types provided by the plugin. Since our calculus is strongly
normalizing and all functions are total, we can avoid using domain
theory to model partiality: our domains are simply sets. Likewise,
we can use functions as the domain of function types.

Definition 3.1 (Domains). The domain [ 7 ]| of a type 7 is defined
as in Fig. O

Given this domain construction, we can now define an evaluation
function for terms. The plugin has to provide the evaluation function
for constants. In general, the evaluation function [ ¢ ]| computes the
value of a well-typed term ¢ given the values of all free variables in
t. The values of the free variables are provided in an environment.

Definition 3.2 (Environments). An environment p assigns values
to the names of free variables.

pu=c¢cl|lpx=0v

We write [ '] for the set of environments that assign values to
the names bound in I" (see Fig. B(D). O

Definition 3.3 (Evaluation). Given I' - ¢ : 7, the meaning of ¢ is
defined by the function [ ¢ ] of type [T'] — [ 7] in Fig. O

This is the standard semantics of the simply-typed A-calculus.
We can now specify what it means to incrementalize the simply-
typed A calculus with respect to this semantics.

3.5 Change semantics

The informal specification of differentiation is to map changes in
a program’s input to changes in the program’s output. In order to
formalize this specification in terms of change structures and the
denotational semantics of the object language, we now define a
non-standard denotational semantics of the object language that
computes changes. The evaluation function [[H}A computes how
the value of a well-typed term ¢ changes given both the values and
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Figure 4. Standard and differential behavior of the simply-typed A-calculus. The left column defines differentiation as a source-to-source
transformation. The right column defines the standard semantics of the simply-typed lambda calculus. The middle column connects these
artifacts via a differential semantics that maps A-terms to the derivative of their standard semantics.

the changes of all free variables in ¢. In the special case that none
of the free variables change, [[26}]A computes the nil change. By
Theorem [2.10] this is the derivative of [ ¢ ] which maps changes to
the input of [ ¢ ] to changes of the output of [ ¢ ], as required.

First, we define a change structure on [ 7 ] for all 7. The carrier
A of these change structures will serve as non-standard domain for

the change semantics. The plugin provides a change structure C', on
base type ¢ such that Vu.A, v C [Ac].

Definition 3.4 (Changes). Given a type 7, we define a change
structure C for [ 7] by induction on the structure of 7. If 7 is a
base type ¢, then the result C, is supplied by the plugin. Otherwise
we use the construction from Theorem [2.8]and define

Comsr = Cy — C-. O

To talk about the derivative of [ ¢ ]|, we need a change structure
on its domain, the set of environments. Since environments are
(heterogeneous) lists of values, we can lift operations on change
structures to change structures on environments acting pointwise.

Definition 3.5 (Change environments). Given a context I', we
define a change structure Ct on the corresponding environments
[T ] and change environments Arp in Fig.
The operations @, and ©, are defined as follows.
ede=¢
(p,z =v) & (dp,dz = dv) = (p® dp) ,x = (v & dv)

ECe=¢

(p2,2=v2) & (pr,z =v1) = (p2 6 p1),x = (v2 O v1)

The properties in Definition 2] follow directly from the same
properties for the underlying change structures C-. O

At this point, we can define the change semantics of terms and
prove that [ £]* it is the derivative of [ ¢ . For each constant ¢, the
plugin provides [ ¢]*, the derivative of [ ¢].

Definition 3.6 (Change semantics). The function [¢]* is defined
in Fig. ()]

Lemma 3.7. Given 'l ¢ : 7, [¢]* is the derivative of [t]. [

3.6 Correctness of differentiation

We can now prove that the behavior of [ Derive(t) ] is consistent with
the behavior of [ ¢]*. This leads us to the proof of the correctness
theorem mentioned in the introduction.

The logical relation [[19, Chapter 8] of erasure captures the idea
that an element of a change structure stays almost the same after we
erase all traces of dependent types from it.

Definition 3.8 (Erasure). Let dv € A-v and dv’ € [ AT ]. We say
dv erases to dv’, or dv ~¥ dv’, if one of the following holds:

(a) T is a base type and dv = dv’.
(b) T = 60 — o1 and for all w, dw, dw’ such that dw ~y, dw’,
we have (dv w dw) ~& ") (dv' w duw’). O

[Tz:r]={(pz=v)|pe[T]Avelr]}



Sometimes we shall also say that dv € A, v erases to a closed
term dt : At, in which case we mean dv erases to ([ dt ] @)ﬂ

The following lemma makes precise what we meant by “almost
the same”.

Lemma 3.9. Suppose dv ~2 dv’. If @’ is the erased version of the
update operator @ of the change structure of 7 (Sec.[3.I), then

v@dv=v@ dv'. O

It turns out that [ ¢]* and Derive(t) are “almost the same”. For
closed terms, we make this precise by:

Lemma 3.10. If (¢ :
Derive(t).

7) is closed, then ([¢]*@ @) erases to

We omit for lack of space a more general version of Lemma[3.10]
which holds also for open terms, but requires defining erasure
on environments. The main correctness theorem is a corollary of

Lemmas 3.7} [3:9]and 310}

Theorem 3.11 (Correctness of differentiation). Let f : ¢ — 7 be
a closed term of function type. For every closed base term s : o
and for every closed change term ds : Ao such that some change
dv € A, [ s] erases to ds, we have
f (5@ ds) = (f 5) & (Derive(f) 5 ds),
where 2 is denotational equality (a = biff [a] = [b]). O
Theorem [3.TT]is a more precise restatement of Eq. (T). Requiring

the existence of dv ensures that ds evaluates to a change, and not to
junk in [ Ac .

3.7 Plugins

Both our correctness proof and the differentiation framework (which
is the basis for our implementation) are parametric in the plugin.
Instantiating the differentiation framework requires a differentiation
plugin; instantiating the correctness proof for it requires a proof
plugin, containing additional definitions and lemmas.

To allow executing and differentiating A-terms, a differentiation
plugin must provide:

e base types, and for each base type ¢, the erased change structure
of ¢ as specified in Fig.

e primitives, and for each primitive ¢, the term Derive(c).

Examples With bags of numbers as a primitive type, and a change

structure erased from Bag S (defined in Sec. , the derivative of
merge is easy to write down:

Derive(merge) = Au. Adu. Av. Adv. merge du dv

In other words, the change to the merge of two bags is the merge of
changes to each bag. O
For each base type ¢, a proof plugin must provide:

e a semantic domain [[ ¢ ],
¢ a change structure 6,‘ such that Vo.A,v C [Ac],

e a proof that C, erases to the corresponding erased change
structure in the differentiation plugin.

For each primitive ¢ : 7, the proof plugin must provide:
e its value [ ¢] in the domain [ 7],

e its derivative ([c¢]* @ @)ﬂin the change set of T,

1'To evaluate a closed term ¢, we need no environment entries, so the empty
environment & suffices: ([¢] @) is the value of ¢ in the empty environment,
and ([t }]A@ @) is the value of ¢ using the change semantics, the empty
environment and the empty change environment.

e a proof that ([ ¢]* @ @) erases to the term Derive(c).

To show that the interface for proof plugins can be implemented,
we wrote a small proof plugin with integers and bags of integers.
To show that differentiation plugins are practicable, we have imple-
mented the transformation and a differentiation plugin which allows
the incrementalization of non-trivial programs. This is presented in
the next section.

4. Differentiation in practice

In practice, successful incrementalization requires both correctness
and performance of the derivatives. Correctness of derivatives is
guaranteed by the theoretical development the previous sections,
together with the interface for differentiation and proof plugins,
whereas performance of derivatives has to come from careful design
and implementation of differentiation plugins.

4.1 The role of differentiation plugins

Users of our approach need to (1) choose which base types and
primitives they need, (2) implement suitable differentiation plugins
for these base types and primitives, (3) rewrite (relevant parts of)
their programs in terms of these primitives and (4) arrange for their
program to be called on changes instead of updated inputs.

As discussed in Sec. [3.2] differentiation supports abstraction,
application and variables, but since computation on base types is
performed by primitives for those types, efficient derivatives for
primitives are essential for good performance.

To make such derivatives efficient, change types must also have
efficient implementations, and allow describing precisely what
changed. The efficient derivative of sum in Sec.[I]is possible only
if bag changes can describe deletions and insertions, and integer
changes can describe additive differences.

For many conceivable base types, we do not have to design
the differentiation plugins from scratch. Instead, we can reuse
the large body of existing research on incrementalization in first-
order and domain-specific settings. For instance, we reuse the
approach from Gluche et al. [[12] to support incremental bags and
maps. By wrapping a domain-specific incrementalization result in
a differentiation plugin, we adapt it to be usable in the context of
a higher-order and general-purpose programming language, and in
interaction with other differentiation plugins for the other base types
of that language.

For base types with no known incrementalization strategy, the
precise interfaces for differentiation and proof plugins can guide the
implementation effort. These interfaces could also from the basis
for a library of differentiation plugins that wor