Incrementalizing λ-Calculi by Static Differentiation
A Theory of Changes for Higher-Order Languages and Ongoing Work

Paolo Giarrusso
PPS, 22-01-2015
(with Yufei Cai, Tillmann Rendel, Klaus Ostermann)

Tübingen University
Incrementalizing λ-Calculi by Static Differentiation

Problem: Incremental computation
✔ Support for a language with first-class functions!
✔ Mechanized proof in Agda
✔ Implementation in Scala
✔ Performance case-study
$x_1 \xrightarrow{f} y_1$

$y_2 \xleftarrow{f} x_2$
\(f \) invoked again! 😞
General examples

- Task: Compute statistics on a database of all citizens of France
 - Each time something changes, update statistics
 - Changes are small
 - Can update results without recomputation?

- Variant: statistics on Twitter timelines
 - And keep these statistics up-to-date in real-time.
Examples

• Task: typecheck & compile a program, or a proof script (say, in Coq)
 • Change: Update a basic definition of the program
 • Changes are still “small”
 • Can update results without recomputation?
Running example

• Sum numbers from a collection

• **Base** input collection x_1: {{{1,1,2,3,4}}}

• **Updated** input collection x_2: {{{1,2,3,4,5}}}

• The collection is a bag (that is, a multiset)
 • Like in sequences, elements can be repeated
 • Like in sets, order is irrelevant
Example

\[
f \text{coll} = \text{fold (+) 0 coll}
\]
\[
y = f \times
\]
\[
x_1 = \{\{1,1,2,3,4\}\}
\]
\[
y_1 = 1 + 1 + 2 + 3 + 4 = 11
\]
\[
x_2 = \{\{1,2,3,4,5\}\}
\]
\[
y_2 = 1 + 2 + 3 + 4 + 5
\]
\[
= 15 = s_1 - 1 + 5
\]
$x_1 \xrightarrow{f} y_1$

y_2
\[dx = x_2 \ominus x_1 \]

\[dy = y_2 \ominus y_1 \]

\[y_2 = y_1 \oplus dy \]
\[f' x_1 \, dx \]

\[dx = x_2 \ominus x_1 \]

\[f' x_1 \, dx \]

\[dy = y_2 \ominus y_1 \]

\[= f' x_1 \, dx \]

\[y_2 = y_1 \oplus dy \]
Example

\[f \text{ coll} \quad = \quad \text{fold}(+) \quad 0 \quad \text{coll} \]

\[y \quad = \quad f \quad x \]

\[x_1 \quad = \quad \{1,1,2,3,4\} \]

\[y_1 \quad = \quad 11 \]

\[x_2 \quad = \quad \{1,2,3,4,5\} \]

\[dx \quad = \quad \{1,2,3,4,5\} \oplus \{1,1,2,3,4\} = \{5, 1\} \]

\[y_2 \quad = \quad x_1 \oplus f' \quad x_1 \quad dx = 11 \oplus (-1 + 5) \]

\[= \quad 15 \]
Derivatives

f' is the \textit{derivative} of f if

- input: base input x_1; a change dx valid for x
- output: change dy valid for \textit{base output} $(f \ x)$
- correctness:

\[(f \ x_1 \oplus (f' \ x_1 \ dx)) = f \ (x_1 \oplus dx)\]

- Notation: application binds tighter than anything

\[f \ x_1 \oplus f' \ x_1 \ dx = f \ (x_1 \oplus dx)\]
Using derivatives: idea

First, base computation:

\[y_1 = f(x_1) \]

Later, incremental computation “algorithm”:

\[y_2 = y_1 \oplus dy = y_1 \oplus f'(x_1) \; dx \]

instead of

\[y_2 = f(x_1 \oplus dx) \]
Setting

• An algebraic theory of change structures for functions
 • To specify and reason about the problem
 • Using dependent types!

• A code transformation Derive produces derivatives of programs
 • simply-typed λ-calculus programs (STLC), parameterized by a plugin for constants and base types
Proof strategy

We decompose our transformation into 2 phases:

- non-standard denotational semantics
 - simply-typed λ-calculus programs (STLC) → type theory functions (Agda)
- erasure to extract STLC programs
 - we should have used modified realizability?
- Proof each phase correct
Signature of change structures

Types

(C1) V type

(C2) Δx type $\forall x : V$

Operations

(C3) $x_1 \oplus dx : V$ $\forall dx : \Delta x_1$

(C4) $x_2 \ominus x_1 : \Delta x_1$

Algebraic equations

(C5) $x_1 \oplus (x_2 \ominus x_1) = x_2$

base type
change types
update
difference
cancellation
Change structure for naturals

Let’s define a change structure such that:

\[x ⊕ dx = x + dx \]
\[x_2 ⊖ x_1 = x_2 - x_1 \]

like in the examples in the beginning of the talk.
Change structure for naturals

So we define:

(C1) base type: \(\mathbb{N} \)

(C2) change types:

\[\Delta x = \{ dx \in \mathbb{Z} \mid x + dx \geq 0 \} \]

(C3) \(x_1 \oplus dx = x_1 + dx : \mathbb{N} \)

(C4) \(x_2 \ominus x_1 = x_2 - x_1 : \Delta x_1 \)

(C5) \(x_1 \oplus (x_2 \ominus x_1) = x_1 + (x_2 - x_1) = x_2 \)
Example derivatives

Remember: $y_2 = y_1 \oplus dy = y_1 \oplus f' x_1 \ dx$

$id \ x = x$
$id' \ x \ dx = dx$

$f \ x = x + 5$
$f' \ x \ dx = dx$
Change structures

- **Algebraic** theory of changes (ToC)
 - for **equational reasoning**
- Change types ≠ base type
 - (unlike calculus in math, Koch [2010], Gluche et al. [1997] in CS)
- ToC is about mathematical functions (in type theory), not programs
- ToC extended to programs through denotational semantics
An equivalence of changes?

• There can be multiple changes which “do the same thing”
• Example:

\{1,2,3,4,5\} \Theta \{1,1,2,3,4\} can be represented by \{5, 1\} or by “change 1 through +4”.

Change equivalence (d.o.e.)

Take $x \in V$, dx_1, $dx_2 \in \Delta x$

$dx_1 \triangleq dx_2$ iff

$x \oplus dx_1 = x \oplus dx_2$

that is, have same effect when applied.

$\{1,2,3,4,5\} \ominus \{1,1,2,3,4\}$ can be represented by $\{5, 1\}$ or by “change 1 through +4”, so $\{5, 1\} \triangleq "\text{change 1 through +4}"$
Changes also form a category

- Objects: values of type V
- Arrows: an arrow from a to b is a (set of \triangle changes) going from a to b
Derived ops give a category

Derived ops

\[0_x = x \ominus x \quad \text{nil change} \]
\[dx_1 \odot dx_2 = (x_1 \oplus dx_1) \oplus dx_2 \ominus x_1 \quad \text{change composition} \]

Derived algebraic equations

\[x \oplus 0_x = x \quad \text{right unit for } \oplus \]
\[dx \odot 0 \cong 0 \odot dx \cong dx \quad \text{composition unit} \]
\[(dx_1 \odot dx_2) \odot dx_3 \cong dx_1 \odot (dx_2 \odot dx_3) \quad \text{composition associativity} \]
(Static) Differentiation

• Given a (simply-typed) λ-term f:

 f' is a λ-term, the derivative of f

• f' can be optimized further!

• Correctness (proved in Agda):

$$\left[f(a \oplus da)\right] = \left[f a \oplus Derive(f) a da\right]$$
“Derivatives” are non-linear!

- Set $f' = \text{Derive}(f)$
- $f' \ a \ (da \odot db) =$
- $f' \ a \ da \odot f' \ (a \oplus da) \ db \neq$
- $f' \ a \ da \odot f' \ a \ db$
Vs calculus

• That’s because $a \oplus da$ can’t be approximated with a, unlike in calculus:
 • changes do not “tend to zero” (“infinitesimal”), they are finite

• Incremental calculi (ours and other ones) are thus closer to the calculus of finite differences than the one of derivatives.
Vs differential lambda calculus

- Contrast with linearity in **differential lambda calculus**:
 \[
 \frac{\partial f}{\partial x} \cdot (dx + dy) = \frac{\partial f}{\partial x} \cdot dx + \frac{\partial f}{\partial x} \cdot dy
 \]
- You can model \(\frac{\partial f}{\partial x} \cdot dx \) with the substitution \(x \mapsto x \oplus dx \)… as \(f[x \mapsto x \oplus dx] \ominus f \)
- But it cannot be linear substitution!
- We must compute \(f \) on the new value of \(x \), that is \(x \oplus dx \), so we substitute everywhere.
\[
\begin{align*}
\left[f \left(a \oplus da \right) \right] &= \left[f a \oplus f' a \ da \right] \\
\left[f \left(a \oplus da \oplus db \right) \right] &= \left[f a \oplus f' a \left(da \odot db \right) \right] \\
\left[f a \oplus f' a \left(da \odot db \right) \right] &= \left[f \left(a \oplus da \oplus db \right) \right] = \\
\left[f a \oplus f' a \ da \oplus f' \left(a \oplus da \right) \ db \right]
\end{align*}
\]
Derivative examples #1

\[id_T = \lambda (x : T). x \]

\[id_T' = \text{Derive}(id_T) = \lambda (x : T) (dx : \Delta T). dx \]

- \(\Delta T \), not \(\Delta x \)
 - no dependent types
- \(\Delta T \) is expanded by \textit{Derive}
- changes \((dx)\) are first-class
First-class functions
First-class functions

• Functions are data
• So they can change!
• Concretely, a closure changes if data in its environment changes
\[x_1 \xrightarrow{f_1} y_1 \xrightarrow{f_2} y_2 \xrightarrow{dx} x_2 \]

\[y_1 \xrightarrow{dy} y_2 \]
\[x_1 \rightarrow dx \rightarrow x_2 \]

\[f_1 \rightarrow df \rightarrow f_2 \]

\[y_1 \rightarrow dy \rightarrow y_2 \]
\[x_1 \quad \text{dx} \quad x_2 \]
\[y_1 \quad \text{dy} \quad y_2 \]

\[f \quad f' \quad f \]

\[\int f' \, dx = f(x) \]
Derivatives → function changes

From:
\[f' \ x_1 \ dx = f \ x_2 \ominus f \ x_1 = y_2 \ominus y_1 = dy \]

to:
\[df \ x_1 \ dx = f_2 \ x_2 \ominus f_1 \ x_1 = y_2 \ominus y_1 = dy \]

• Function values change, e.g. because data in closures change!
• Change structure for functions in paper
Change structure for functions

\[\Delta_{\sigma \rightarrow \tau} = \lambda (f: \left[\sigma \rightarrow \tau \right]) \rightarrow \sum_{df} \forall (x : \left[\sigma \right]) (dx : \Delta x) \rightarrow \Delta (f x) \text{ valid } (f, df) \]
Derivative examples #2

\(\text{id}_T \) = \(\lambda (x : T). \ x \)

\(\text{id}_T' = \text{Derive}(\text{id}_T) = \lambda (x : T) (dx : \Delta T). \ dx \)

\(\text{app}_{TU} \) = \(\lambda (f : T \to U) (x : T). \ f \ x \)

\(\text{app}_{TU}' = \text{Derive}(\text{app}_{TU}) = \lambda (f : T \to U) (df : \Delta(T \to U)) (x : T) (dx : \Delta T). \ df \ x \ dx \)

\(\Delta(T \to U) = T \to \Delta T \to \Delta U \)
Language

\[T ::= t \mid T_1 \rightarrow T_2 \]
\[t ::= \]
\[s \ t \mid \lambda x^T . \ t \mid x^T \mid c \]

Base types and constants specified by a language plugin.
Deriving terms

We require that \textit{Derive} satisfies admissible rule:

\[
\begin{align*}
\Gamma \vdash t : T \\
\Gamma, \Delta\Gamma \vdash \text{Derive}(t) : \Delta T
\end{align*}
\]

\[\Delta I = \ldots\]

\[\Delta(T_1 \rightarrow T_2) = T_1 \rightarrow \Delta T_1 \rightarrow \Delta T_2\]
Deriving terms

Propagate changes:

\[
\text{Derive}(s \ t) = \text{Derive}(s) \ t \ \text{Derive}(t)
\]
\[
\text{Derive}(\lambda x. \ t) = \lambda x \ dx. \ \text{Derive}(t)
\]

Return changes:

\[
\text{Derive}(x) = dx
\]

Change of primitives:

\[
\text{Derive}(c) = dc
\]
Deriving terms

• The derivative only “follows” the computation propagating changes
• Derivatives of primitives receive inputs and changes, and should compute output changes efficiently
Incrementalizing λ-calculi

- **Language plugins** define datatypes and their change structures
- They also define primitives and how to handle them
- Use existing/new research
Which primitives?

- 1st-class functions ⇒ few primitives (e.g. folds) required, other ops (e.g. map) in libraries
- Primitives encapsulate efficiently incrementalizable skeletons
Example

\[f \text{ coll} = \text{fold (}+) \ 0 \ \text{coll} \]
\[y = f \ x \]
\[\text{coll}_0 = \{1,1,2,3,4\} \]
\[\text{coll}_1 = \{1,2,3,4,5\} \]
\[\text{dcoll} = \{1,2,3,4,5\} \ominus \{1,1,2,3,4\} = \{5, _\} \]

What about the removal of 1?
Example

sum s = fold (+) 0 s
y = sum coll
dsum s ds = ... = fold (+) 0 ds
dy = dsum coll dcoll

coll₀ = {{1,2,3,4}}
coll₁ = {{2,3,4,5}}
dcoll = {{2,3,4,5}} Θ {{1,2,3,4}} = {{1, 5}}
Running example & primitives

\[
\begin{align*}
f \text{ coll} & = \text{fold (+) 0 coll} \\
y & = f \times \\
x_1 & = \{1, 1, 2, 3, 4\} \\
x_2 & = \{1, 2, 3, 4, 5\} \\
dx & = \{1, 2, 3, 4, 5\} \ominus \{1, 1, 2, 3, 4\} = \{5, 1\}
\end{align*}
\]

What about 1, i.e. the removal of 1?
Running example & primitives

\[f \text{ coll} = \text{fold } G \text{ coll} \quad G \text{ abelian group!} \]
\[y = f \times x \]
\[x_1 = \{1,1,2,3,4\} \]
\[x_2 = \{1,2,3,4,5\} \]
\[dx = \{1,2,3,4,5\} \Theta \{1,1,2,3,4\} = \{5,1\} \]

// if \(dG \) is the nil change of \(G \)
\[df \times_1 dx = \text{fold’ } G \ dG \ x_1 dx = \ldots = \text{fold } G \ dx = 4 \]
\[dy = df \times_1 dx \]
Caching intermediate results

The derivative reuses results:

\[
\text{Derive}(s \ t) = \text{Derive}(s) \ t \ \text{Derive}(t)
\]

- Term \(t\) was already computed! We could reuse the result, but we do not save it…
- Right now, if \(t\) is needed, you must recompute it.
- Up to now: focus on cases you don’t need it
- Present work: reusing Liu&Teitelbaum [1995]
Performance case study (based on) MapReduce:

Run me' (ms) vs. Input's size

Incremental vs. Recomputation
In the paper...

- Change structure for first-class functions!
- A code transformation for λ-calculi
- A mechanized correctness proof (in Agda, with denotational semantics & logical relations)
- Some hints on applying ToC
- Implementation, language plugin with bags and maps, and performance case study in Scala
Conclusions

• Incremental computation can give great performance advantages
• Theory of Changes for describing incremental computation
 • maybe applicable to other approaches
• Lots of work to do
 • Lots of avenues for future work — talk to us!
Further optimizations

• Since we create an incremental program, we can optimize it!
• To avoid computing intermediate results we don’t use, this time we transform abstractions to be by-name lambdas.
• We could use absence analysis in the future.
• Further transformations possible.
References

Questions?
Static caching
Static caching

- Based on work of Liu & Teitelbaum [1995]
- Basic idea: remember and save intermediate results of all computations
- Whenever a computation returns a value, save the value for future reuse
- Each function returns a tuple:
 - its original return value
 - all intermediate results
Static caching & CBPV

• What’s the correct notion of *computation* and *value*?
 • First attempt: A-normal form
 • Is a partially applied curried function a value?
 • Should we save the result of primitives?
 • Result of pair constructors, introduction forms: not needed, because they create values
 • Result of elimination forms: needed
 • Answer: we should save the result of computations, not of values, and divide primitives accordingly
Change equivalence
Change equivalence

- A change can have different but \equiv representations, but they should not be distinguished.
- Change operations (the ones in the signature) preserve \triangleq.
- If a function only accesses changes via operations in the signature, it preserves \triangleq.
- We’ll restrict attention to such functions.
Restrict attention to Δ-respecting functions

- We just restrict attention to function with “abstract enough” types
 - Change types must be abstract
- Those functions can only access changes with the change interface …
- … so those functions can’t distinguish equivalent changes!
In Ocaml

module type Base = sig type v end;;
module type Change =
 functor (B: Base) ->
 sig
 type v = B.v
 type dv (*sealed in structures!*)
 val ⊕: v -> dv -> v
 val ⊖: v -> v -> dv
 end;;
In Ocaml

module type Change = sig
 type v (*concrete in structures*)
 type dv (*sealed in structures!*)
 val oplus: v -> dv -> v
 val ominus: v -> v -> dv
end;;
module type ChangeInt
=
 sig
 include Change with type v = int
 val plusDeriv :
 v → dv → v → dv → dv
 end;;
In Ocaml

module ChangeIntStruct : ChangeInt
 = struct
 type v = int
 type dv = int (* sealed! *)
 let oplus v dv = v + dv
 let ominus v2 v1 = v2 - v1
 let plusDeriv x dx y dy = dx + dy
 end;;
Conjecture on d.o.e.

“D.o.e. (Δ) implies observational equivalence.”

Open questions:

• must check that functions have “abstract enough” dependent types

• we need a proof of parametricity for the type theory we use
 • we can express the change signature with ML module system, and translate that to System Fomega through techniques by (XXX citation) F-ing modules paper
Understanding our changes

- $\Sigma_{x:V}(\Delta x/\triangleq) \cong V \times V$
- $(A \rightarrow B) \times (A \rightarrow B) \cong (A \rightarrow B \times B) \cong A \rightarrow \Sigma_{x:B}(\Delta x/\triangleq)$
- $A \rightarrow \Sigma_{x:B}(\Delta x/\triangleq) \cong \{ f : \Sigma_{x:A}(\Delta x/\triangleq) \rightarrow \Sigma_{x:B}(\Delta x/\triangleq) | f \text{ is a valid derivative} \}$
Understanding our semantics

• $\lambda V. \Sigma_{x:V} (\Delta x/\cong) \cong \lambda V. V \times V$ monad

• Is our semantics related to “just” a standard categorical semantics in the Eilenberg-Moore category of this monad?
A categorically-inspired semantics

• Claim: it’s useful to design the definition of change structures using category theory

• If we do that, we see that semantically

 \[\Sigma_{V: \Delta V / \cong} (\cong) \cong V \times V \]
New slides
Add extension of ToC to programs through denotational semantics?
Or just add proof strategy?
Relate erasure to realizability!
Change equality: multiple representations

A change can have multiple \triangleq representations, but they should not be distinguished.

Semantic functions should respect \triangleq; that’s guaranteed if they only use the change signature.
Change equivalence (conjecture)

• Thanks to parametricity for abstract types, clients of Change can’t observe the difference between d.o.e. changes, so d.o.e. changes are observationally equivalent!

• We conjecture that all programs we want are valid clients of Change & c. (we just didn’t check yet).

• We need parametricity for the right language — we conjecture F-ing modules is enough.
Warning

• This presentation (and the paper) uses set theory for “simplicity”
• In fact, our Agda formalization uses type theory!
• \(\Delta v\) is a dependent type of changes!
• \(\Delta v_1\) and \(\Delta v_2\) are disjoint iff \(v_1 \neq v_2\)
• (XXX This is needed for the categorical semantics)
• Changes DT for a type T have:
 • a source of type T
 • a destination of type T
 • We have functions from
 • (These aren’t necessarily computable)