Incrementalizing A-Calculi by

Static Differentiation

A Theory of Changes for Higher-Order
Languages and Ongoing Work

Paolo Giarrusso PPS, 22-01-2015
(with Yufei Cai, Tillmann Rendel, Klaus
Ostermann)

Tlbingen University

Incrementalizing 1-Calculi by >
Static Differentiation b

Program Incremental

‘ program

Optimized

incremental
program

Problem: Incremental computation

v Support for a language with first-class functions!
v Mechanized proof in Agda

v Implementation in Scala

v Performance case-study

f invoked
again! ®

General examples

Task: Compute statistics on a database of all
citizens of France
Each time something changes, update statistics
Changes are small
Can update results without recomputation?

Variant: statistics on Twitter timelines
And keep these statistics up-to-date in real-time.

Examples

Task: typecheck & compile a program, or a
proof script (say, in Coq)
Change: Update a basic definition of the program
Changes are still “small”
Can update results without recomputation?

Running example

Sum numbers from a collection
Base input collection x;: {{1,1,2,3,4}}
Updated input collection x,: {{1,2,3,4,5}}

The collection is a bag (that is, a multiset)

Like in sequences, elements can be repeated
Like in sets, order is irrelevant

Example

f coll =fold (+) O coll

y =1 x

X, = {{1,1,2,3,4}} base input
Y, =1+1+2+3+4=11 base output
X, ={{1,2,3,4,5}} upd. input
Y5 =1+2+3+4+5 upd. output

=15=5,-1+5

14

and
1
—@

12 dy =y, ©y, Yo =Yy, @ dy

- -
X1 X9

dx = x, © X;

lf 1f’x1dx lf
Y dy =y, 0y, Y2 =Yy, @dy

=1 x; dx

Example

f coll =fold (+) O coll

y =f x

X - {{1/1/2/3/4}}

Vi =11

x, =1{{1,2,3,45}

dx =1{{1,2,3,4,5}} © {{1,1,2,3,4}} = {{5, 1}}
Vs =X @ x;dx=11® (-1 + 5)

=15

Derivatives

f” is the derivative of f if
input: base input x;; a change dx valid for x

output: change dy valid for base output (f x)
correctness:

(f x;) @ (" x; dx) = f (x; ® dx)

Notation: application binds tighter than
anything

fx, @ x;dx="1(x;, ®dx)

Using derivatives: idea

First, base computation:
yi=1x
Later, incremental computation “algorithm”:
Yo=Yy, @dy =y, @ x; dx
instead of
y,=1(x; ® dx)

Setting

An algebraic theory of change structures for
functions

To specify and reason about the problem

Using dependent types!

A code transformation Derive produces
derivatives of programs

simply-typed A-calculus programs (STLC), parameterized
by a plugin for constants and base types

Proof strategy

Program Incremental

‘ function

Incremental

program

We decompose our transformation into 2 phases
- non-standard denotational semantics
- simply-typed A-calculus programs (STLC) — type theory functions (Agda)

- erasure to extract STLC programs
- we should have used modified realizability?

- Proof each phase correct

Signature of change structures

Types

(C1) Vtype base type
(C2) Ax type Vx:V change types
Operations

(C3) x, ®dx:V V dx : Ax, update
(C4) x, © x, : Ax, difference

Algebraic equations

(C5) x;, @ (x, © x;) =X, cancellation

Change structure for naturals

Let’s define a change structure such that:

X @ dx = X + dx

X, © X =X, — X,

like in the examples in the beginning of the talk.

Change structure for naturals

So we define:

(C1) base type: N
(C2) change types:

Ax ={dx€Z | x+dx>0}
(C3) x; ® dx =x, +dx:N
(C4) x, © x, =X, — X, : Ax,

(C5) x; ® (x, © x;) =X, + (X, = X;) =X,

Example derivatives

Remember: y, =y, @ dy =y, ® 1 x; dx

id x = x

id’ x dx = dx

fx=x+5
' x dx = dx

Change structures

Algebraic theory of changes (ToC)

for equational reasoning

Change types # base type
(unlike calculus in math, Koch [2010], Gluche et al.
[1997] in CY)
ToC is about mathematical functions (in type
theory), not programs

ToC extended to programs through denotational
semantics

An equivalence of changes?

There can be multiple changes which “do the
same thing”

Example:

{{1,2,3,4,5}} © {{1,1,2,3,4}} can be represented
by {{5, 1}} or by “change 1 through +4".

Change equivalence (d.o.e.)

Take x €V, dx,, dx, € Ax
dx, £ dx, iff

X @ dx; = x® dx,

that is, have same effect when applied.
{{1,2,3,4,5}} © {{1,1,2,3,4}} can be represented
by {{5, 1}} or by “change 1 through +4”, so

{{5, 11} £ “change 1 through +4”

Changes also form a category

- Objects: values of type V

- Arrows: an arrow from a to b is a (set of £
changes) going from a to b

Derived ops give a category

Derived ops
0, =x0Ox nil change
dx; © dx, = (x; ® dx;) ® dx, © X,
change composition

Derived algebraic equations
X® 0, =x right unit for ®
dxo 0200 dx 2 dx composition unit
(dx; © dx,) © dx; = dx; © (dx, © dx;)

composition associativity

(Static) Differentiation
- Given a (simply-typed) A-term f:

Derive

—

-f" is a A-term, the derivative of f
-f" can be optimized further!
- Correctness (proved in Agda):

[f@a®da)] =[fa ® Derive(f) a da]

‘Derivatives” are non-linear!

- Set ” = Derive(f)

-t"a (da © db) =
t"adaot (a®da)db#
f"ada ot adb

Vs calculus

That's because a @ da can’t be approximated
with a, unlike in calculus:
changes do not “tend to zero” (“infinitesimal”), they are
finite
Incremental calculi (ours and other ones) are
thus closer to the calculus of finite differences
than the one of derivatives.

Vs differential lambda calculus

Contrast with linearity in differential lambda

calculus:
of/0x-(dx + dy) = of/0x-dx + of/ox-dy

You can model of/ox-dx with the substitution x
—» X®dx...asflx—~ x®dx]©f

But it cannot be linear substitution!

We must compute f on the new value of x, that
is x @ dx, so we substitute everywhere.

[f@®da)] =[fa @ " ada]
[f@®da®db)] =[fa ® f"a(da ® db)]

‘[fa ® fa(daodbh)]=[f@a®da®db)]=
[fa ® ffada® f(@®da)db)]

Derivative examples #1

id; =A(x:T).x
id;’ = Derive(id;) =A(x:T) (dx:AT). dx
AT, not Ax

no dependent types
AT is expanded by Derive
changes (dx) are first-class

First-class functions

First-class functions

- Functions are data
- So they can change!

- Concretely, a closure changes if data in its
environment changes

Derivatives — function changes

From:
f’x,dx=fx,©fx,=y,O vy, =dy

to:
df x, dx=1f,x,©f, x,=y, 0O y,=dy

Function values change, e.g. because data in
closures change!

Change structure for functions in paper

Change structure for functions

A, .=AF[0—-T1]) —
de:V(x :[o]) (dx : Ax) — A(f x) valid <f/ df)

Derivative examples #2

id; =A(x:T). x
id;’ = Derive(id;) =A(x:T) (dx: AT). dx
appr, =Af:T—=U)(x:T).fx

appry,” = Derive(appry) =
A@{f:T— U (df: AT — U)
(x :T) (dx : AT). df x dx

AT —-U) =T —- AT — AU

&

Language
T ::=1v | T, - T,
T =

s t | AxT. t | xT | C

Base types and constants specified by a language
plugin.

Deriving terms

We require that Derive satisfies admissible
rule:

[+t = T
[, Al + Derive (t) : AT

Al = ..
A(T, - T,) =T, » AT, -» AT,

Deriving terms

Propagate changes:

Derive(s t) = Derive(s) t Derive(t)
Derive(Ax. t) = Ax dx. Derive(t)

Return changes:

Derive(x) = dx

Change of primitives:

Derive(c) = dc

Deriving terms

The derivative only “follows” the computation
propagating changes
Derivatives of primitives receive inputs and

changes, and should compute output changes
efficiently

Incrementalizing 1-calculi

Language plugins define datatypes and their
change structures

They also define primitives and how to handle
them

Use existing/new research

Which primitives?

1st-class functions = few primitives (e.g. folds)
required, other ops (e.g. map) in libraries

Primitives encapsulate efficiently
incrementalizable skeletons

Example

f coll = fold (+) O coll
y =fx

collo = {{1,1,2,3,4}}
colli ={{1,2,3,4,5}}

dcoll = {{1,2,3,4,5}} © {{1,1,2,3,4}} = {{5, 1}}

What about the removal of 1?¢

Example

sum s = fold (+) O s

y = sum coll

dsumsds=... =fold (+) O ds

dy = dsum coll dcoll

colloe = {{1,2,3,4}}
colls = {{2,3,4,5}}

deoll = {{2,3,4,5}} © {{1,2,3,4}} = {{1, 5}}

Running example & primitives

f coll = fold (+) 0 coll

y =1 x

X1 — {{1/1/2/3/4}}

X, ={{1,2,3,4,5}}

dx ={{1,2,3,4,5}} © {{1,1,2,3,4}} = {{5, 1}}

What about 1, i.e. the removal of 17

Running example & primitives

f coll =fold G coll G abelian group!
X1 — {{1/1/2/3/4}}

x, =1{{1,2,3,4,5}}

dx =111,2,3,4,5}} © {{1,1,2,3,4}} = {{5, 1}}

// it dG is the nil change of G

df x, dx =fold" G dG x; dx = ... =fold G dx = 4
dy = df x; dx

Caching intermediate results

The derivative reuses results:

Derive(s t) = Derive(s) t Derive(t)

Term t was already computed! We could reuse
the result, but we do not save it...

Right now, if t is needed, you must recompute
it.

Up to now: focus on cases you don’t need it
Present work: reusing Liu&Teitelbaum [1995]

Performance case study (based
on) MapReduce:

@{=|ncremental ®==0=»Recomputation

Runtime (ms)

10000

1000

100

10

1k 2k 4k 8k 16k 32k 64k 128k 256k 512k 1024k 2048k 4096k

0.1
Input size

In the paper...

Change structure for
first-class functions!

A code transformation
for A-calculi

A mechanized correctness proof
(in Agda, with denotational semantics & logical
relations)

Some hints on applying ToC

Implementation, language plugin with bags and
maps, and performance case study in Scala

Conclusions

Incremental computation can give great
performance advantages

Theory of Changes for describing incremental
computation

maybe applicable to other approaches

| ots of work to do
| ots of avenues for future work — talk to us!

Further optimizations

Since we create an incremental program, we
can optimize it!

To avoid computing intermediate results we
don’t use, this time we transform abstractions to
be by-name lambdas.

We could use absence analysis in the future.
Further transformations possible.

References

[Liu&Teitelbaum 1995] Caching intermediate
results for program improvement. PEPM 1995.

[Koch 2010] Incremental query evaluation in a
ring of databases. PODS 2010.

[Gluche et al. 1997] Gluche, Grust,
Mainberger, and Scholl. Incremental updates
for materialized OQL views. In Deductive and

Object-Oriented Databases, Springer.

Questions?

Static caching

Static caching

Based on work of Liu&Teitelbaum [1995]

Basic idea: remember and save intermediate
results of all computations

Whenever a computation returns a value, save
the value for future reuse

Each function returns a tuple:
its original return value
all intermediate results

Static caching & CBPV

What’s the correct notion of computation and

value?
First attempt: A-normal form
s a partially applied curried function a value?

Should we save the result of primitives?
Result of pair constructors, introduction forms: not needed, because they
create values
Result of elimination forms: needed

Answer: we should save the result of computations, not of values, and
divide primitives accordingly

Change equivalence

Change equivalence

A change can have different but £
representations, but they should not be
distinguished.

Change operations (the ones in the signature)
preserve =.

If a function only accesses changes via
operations in the signature, it preserves £.

We'll restrict attention to such functions.

Restrict attention to 2-

respecting functions

We just restrict attention to function with
“abstract enough” types
Change types must be abstract

Those functions can only access changes with
the change interface ...

... so those functions can’t distinguish
equivalent changes!

In Ocaml

module type Base = sig type v end;;
module type Change =
functor (B: Base) —>
sig
type v = B.v
type dv (xsealed in structures!x)
val e: v —> dv —> v
val e: v —=> v —> dv
end; ;

In Ocaml

module type Change = sig
type v (*concrete in structuresx)
type dv (*ksealed in structures!x)
val oplus: v —> dv —> v
val ominus: v —> v —> dv

end; ;

module type Changelnt
= S1g
include Change with type v =
int
val plusDeriv :
v —> dv —> v —> dv —> dv
end; ;

In Ocaml

module ChangelIntStruct : Changelnt
= Sstruct
type v = 1int
type dv = int (% sealed! x)
let oplus v dv = v + dv
let ominus v2 vl = v2 — vl
let plusDeriv x dx y dy = dx +

dy
end;:

Conjecture on d.o.e.

/

“D.o.e. (£) implies observational equivalence.’

Open questions:

must check that functions have “abstract
enough” dependent types

we need a proof of parametricity for the type

theory we use
we can express the change signature with ML module
system, and translate that to System Fomega through
techniques by (XXX citation) F-ing modules paper

Understanding our changes

2 (Ax/E) =V xV

*cA—>B)xA—->B=(A—>BxB)=A—>2 5(Ax/%)

Ao 2 g Ax/E)={f:Z ,(Ax/2) > X ,(Ax/%) | fis a valid
derivative }

Understanding our semantics

AV.Z ., (Ax/2) =24 V.V x Vmonad

Is our semantics related to “just” a standard
categorical semantics in the Eilenberg-Moore
category of this monad?

A categorically-inspired
semantics

Claim: it’s useful to design the definition of
change structures using category theory

If we do that, we see that semantically
2, (Av/2) =V xV

New slides

XXX

- Add extension of ToC to programs through
denotational semantics?

- Or just add proof strategy?
- Relate erasure to realizability!

Change equality: multiple

representations

A change can have multiple £ representations,
but they should not be distinguished.

Semantic functions should respect £; that's
guaranteed if they only use the change signature.

Change equivalence (conjecture)

Thanks to parametricity for abstract types,
clients of Change can’t observe the difference
between d.o.e. changes, so d.o.e. changes are
observationally equivalent!

We conjecture that all programs we want are
valid clients of Change & c. (we just didn't
check vyet).

We need parametricity for the right language —
we conjecture F-ing modules is enough.

Warning

This presentation (and the paper) uses set theory
for “simplicity”

In fact, our Agda formalization uses type
theory!

Av is a dependent type of changes!

Av, and Av, are disjoint iff v, # v,

(XXX This is needed for the categorical
semantics)

- Changes DT for a type T have:

-a source of type T

- a destination of type T

- We have functions from

- (These aren’t necessarily computable)

